Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity

The Cyt and Cry toxins are different pore-forming proteins produced by Bacillus thuringiensis bacteria, and used in insect-pests control. Cry-toxins have a complex mechanism involving interaction with several proteins in the insect gut such as aminopeptidase N (APN), alkaline phosphatase (ALP) and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-03, Vol.8 (1), p.4989-12, Article 4989
Hauptverfasser: Torres-Quintero, Mary-Carmen, Gómez, Isabel, Pacheco, Sabino, Sánchez, Jorge, Flores, Humberto, Osuna, Joel, Mendoza, Gretel, Soberón, Mario, Bravo, Alejandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 4989
container_title Scientific reports
container_volume 8
creator Torres-Quintero, Mary-Carmen
Gómez, Isabel
Pacheco, Sabino
Sánchez, Jorge
Flores, Humberto
Osuna, Joel
Mendoza, Gretel
Soberón, Mario
Bravo, Alejandra
description The Cyt and Cry toxins are different pore-forming proteins produced by Bacillus thuringiensis bacteria, and used in insect-pests control. Cry-toxins have a complex mechanism involving interaction with several proteins in the insect gut such as aminopeptidase N (APN), alkaline phosphatase (ALP) and cadherin (CAD). It was shown that the loop regions of domain II of Cry toxins participate in receptor binding. Cyt-toxins are dipteran specific and interact with membrane lipids. We show that Cry1Ab domain II loop3 is involved in binding to APN, ALP and CAD receptors since point mutation Cry1Ab-G439D affected binding to these proteins. We hypothesized that construction of Cyt1A-hybrid proteins providing a binding site that recognizes gut proteins in lepidopteran larvae could result in improved Cyt1Aa toxin toward lepidopteran larvae. We constructed hybrid Cyt1Aa-loop3 proteins with increased binding interaction to Manduca sexta receptors and increased toxicity against two Lepidopteran pests, M. sexta and Plutella xylostella . The hybrid Cyt1Aa-loop3 proteins were severely affected in mosquitocidal activity and showed partial hemolytic activity but retained their capacity to synergize Cry11Aa toxicity against mosquitos. Our data show that insect specificity of Cyt1Aa toxin can be modified by introduction of loop regions from another non-related toxin with different insect specificity.
doi_str_mv 10.1038/s41598-018-22740-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5862903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017053708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-92d94f837011510599bcaf15f119ee60de948440c5082ad3cda194aa43106c3c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERau2f4ADisSFS8qMP7LxBamsSlupEhc4W15nsnWVtYOdoO6_x9stS-GAL2PPPPN6Ri9jbxEuEET7MUtUuq0B25rzhYRav2InHKSqueD89Yv7MTvP-QHKUVxL1G_YMdeqEapRJ2x1FdY-ECUf1tVn6_wwzLma7uddwlPIPlfL7YSXtpriow9VHsn53js_bas-xU3V-XGiZEOpVwONvouH9-MTdsaOejtkOn-Op-z7l6tvy5v67uv17fLyrnYKcao177TsW7EARIWgtF4526PqETVRAx1p2UoJTkHLbSdcZ1FLa6VAaJxw4pR92uuO82pDnaMwJTuYMfmNTVsTrTd_V4K_N-v406i24RpEEfjwLJDij5nyZDY-OxoGGyjO2XDABagyYFvQ9_-gD3FOoay3oxrFRdNAofiecinmnKg_DINgdi6avYumuGieXDS6NL17ucah5bdnBRB7II87kyj9-fs_sr8AHnupUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016523660</pqid></control><display><type>article</type><title>Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Torres-Quintero, Mary-Carmen ; Gómez, Isabel ; Pacheco, Sabino ; Sánchez, Jorge ; Flores, Humberto ; Osuna, Joel ; Mendoza, Gretel ; Soberón, Mario ; Bravo, Alejandra</creator><creatorcontrib>Torres-Quintero, Mary-Carmen ; Gómez, Isabel ; Pacheco, Sabino ; Sánchez, Jorge ; Flores, Humberto ; Osuna, Joel ; Mendoza, Gretel ; Soberón, Mario ; Bravo, Alejandra</creatorcontrib><description>The Cyt and Cry toxins are different pore-forming proteins produced by Bacillus thuringiensis bacteria, and used in insect-pests control. Cry-toxins have a complex mechanism involving interaction with several proteins in the insect gut such as aminopeptidase N (APN), alkaline phosphatase (ALP) and cadherin (CAD). It was shown that the loop regions of domain II of Cry toxins participate in receptor binding. Cyt-toxins are dipteran specific and interact with membrane lipids. We show that Cry1Ab domain II loop3 is involved in binding to APN, ALP and CAD receptors since point mutation Cry1Ab-G439D affected binding to these proteins. We hypothesized that construction of Cyt1A-hybrid proteins providing a binding site that recognizes gut proteins in lepidopteran larvae could result in improved Cyt1Aa toxin toward lepidopteran larvae. We constructed hybrid Cyt1Aa-loop3 proteins with increased binding interaction to Manduca sexta receptors and increased toxicity against two Lepidopteran pests, M. sexta and Plutella xylostella . The hybrid Cyt1Aa-loop3 proteins were severely affected in mosquitocidal activity and showed partial hemolytic activity but retained their capacity to synergize Cry11Aa toxicity against mosquitos. Our data show that insect specificity of Cyt1Aa toxin can be modified by introduction of loop regions from another non-related toxin with different insect specificity.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-22740-9</identifier><identifier>PMID: 29563565</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/22 ; 38/23 ; 38/44 ; 38/70 ; 38/77 ; 631/45/612/1237 ; 631/61/338/469 ; 64 ; 82 ; 82/29 ; Alkaline phosphatase ; Aminopeptidase ; Aquatic insects ; Bacillus thuringiensis ; Binding sites ; Cadherins ; Herbivores ; Humanities and Social Sciences ; Larvae ; Lipids ; multidisciplinary ; Pest control ; Pests ; Point mutation ; Pore-forming proteins ; Proteins ; Science ; Science (multidisciplinary) ; Synergism ; Toxicity ; Toxins</subject><ispartof>Scientific reports, 2018-03, Vol.8 (1), p.4989-12, Article 4989</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-92d94f837011510599bcaf15f119ee60de948440c5082ad3cda194aa43106c3c3</citedby><cites>FETCH-LOGICAL-c511t-92d94f837011510599bcaf15f119ee60de948440c5082ad3cda194aa43106c3c3</cites><orcidid>0000-0002-7573-7475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862903/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862903/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29563565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torres-Quintero, Mary-Carmen</creatorcontrib><creatorcontrib>Gómez, Isabel</creatorcontrib><creatorcontrib>Pacheco, Sabino</creatorcontrib><creatorcontrib>Sánchez, Jorge</creatorcontrib><creatorcontrib>Flores, Humberto</creatorcontrib><creatorcontrib>Osuna, Joel</creatorcontrib><creatorcontrib>Mendoza, Gretel</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><title>Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Cyt and Cry toxins are different pore-forming proteins produced by Bacillus thuringiensis bacteria, and used in insect-pests control. Cry-toxins have a complex mechanism involving interaction with several proteins in the insect gut such as aminopeptidase N (APN), alkaline phosphatase (ALP) and cadherin (CAD). It was shown that the loop regions of domain II of Cry toxins participate in receptor binding. Cyt-toxins are dipteran specific and interact with membrane lipids. We show that Cry1Ab domain II loop3 is involved in binding to APN, ALP and CAD receptors since point mutation Cry1Ab-G439D affected binding to these proteins. We hypothesized that construction of Cyt1A-hybrid proteins providing a binding site that recognizes gut proteins in lepidopteran larvae could result in improved Cyt1Aa toxin toward lepidopteran larvae. We constructed hybrid Cyt1Aa-loop3 proteins with increased binding interaction to Manduca sexta receptors and increased toxicity against two Lepidopteran pests, M. sexta and Plutella xylostella . The hybrid Cyt1Aa-loop3 proteins were severely affected in mosquitocidal activity and showed partial hemolytic activity but retained their capacity to synergize Cry11Aa toxicity against mosquitos. Our data show that insect specificity of Cyt1Aa toxin can be modified by introduction of loop regions from another non-related toxin with different insect specificity.</description><subject>38</subject><subject>38/22</subject><subject>38/23</subject><subject>38/44</subject><subject>38/70</subject><subject>38/77</subject><subject>631/45/612/1237</subject><subject>631/61/338/469</subject><subject>64</subject><subject>82</subject><subject>82/29</subject><subject>Alkaline phosphatase</subject><subject>Aminopeptidase</subject><subject>Aquatic insects</subject><subject>Bacillus thuringiensis</subject><subject>Binding sites</subject><subject>Cadherins</subject><subject>Herbivores</subject><subject>Humanities and Social Sciences</subject><subject>Larvae</subject><subject>Lipids</subject><subject>multidisciplinary</subject><subject>Pest control</subject><subject>Pests</subject><subject>Point mutation</subject><subject>Pore-forming proteins</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synergism</subject><subject>Toxicity</subject><subject>Toxins</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi1ERau2f4ADisSFS8qMP7LxBamsSlupEhc4W15nsnWVtYOdoO6_x9stS-GAL2PPPPN6Ri9jbxEuEET7MUtUuq0B25rzhYRav2InHKSqueD89Yv7MTvP-QHKUVxL1G_YMdeqEapRJ2x1FdY-ECUf1tVn6_wwzLma7uddwlPIPlfL7YSXtpriow9VHsn53js_bas-xU3V-XGiZEOpVwONvouH9-MTdsaOejtkOn-Op-z7l6tvy5v67uv17fLyrnYKcao177TsW7EARIWgtF4526PqETVRAx1p2UoJTkHLbSdcZ1FLa6VAaJxw4pR92uuO82pDnaMwJTuYMfmNTVsTrTd_V4K_N-v406i24RpEEfjwLJDij5nyZDY-OxoGGyjO2XDABagyYFvQ9_-gD3FOoay3oxrFRdNAofiecinmnKg_DINgdi6avYumuGieXDS6NL17ucah5bdnBRB7II87kyj9-fs_sr8AHnupUQ</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Torres-Quintero, Mary-Carmen</creator><creator>Gómez, Isabel</creator><creator>Pacheco, Sabino</creator><creator>Sánchez, Jorge</creator><creator>Flores, Humberto</creator><creator>Osuna, Joel</creator><creator>Mendoza, Gretel</creator><creator>Soberón, Mario</creator><creator>Bravo, Alejandra</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid></search><sort><creationdate>20180321</creationdate><title>Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity</title><author>Torres-Quintero, Mary-Carmen ; Gómez, Isabel ; Pacheco, Sabino ; Sánchez, Jorge ; Flores, Humberto ; Osuna, Joel ; Mendoza, Gretel ; Soberón, Mario ; Bravo, Alejandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-92d94f837011510599bcaf15f119ee60de948440c5082ad3cda194aa43106c3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>38</topic><topic>38/22</topic><topic>38/23</topic><topic>38/44</topic><topic>38/70</topic><topic>38/77</topic><topic>631/45/612/1237</topic><topic>631/61/338/469</topic><topic>64</topic><topic>82</topic><topic>82/29</topic><topic>Alkaline phosphatase</topic><topic>Aminopeptidase</topic><topic>Aquatic insects</topic><topic>Bacillus thuringiensis</topic><topic>Binding sites</topic><topic>Cadherins</topic><topic>Herbivores</topic><topic>Humanities and Social Sciences</topic><topic>Larvae</topic><topic>Lipids</topic><topic>multidisciplinary</topic><topic>Pest control</topic><topic>Pests</topic><topic>Point mutation</topic><topic>Pore-forming proteins</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synergism</topic><topic>Toxicity</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres-Quintero, Mary-Carmen</creatorcontrib><creatorcontrib>Gómez, Isabel</creatorcontrib><creatorcontrib>Pacheco, Sabino</creatorcontrib><creatorcontrib>Sánchez, Jorge</creatorcontrib><creatorcontrib>Flores, Humberto</creatorcontrib><creatorcontrib>Osuna, Joel</creatorcontrib><creatorcontrib>Mendoza, Gretel</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres-Quintero, Mary-Carmen</au><au>Gómez, Isabel</au><au>Pacheco, Sabino</au><au>Sánchez, Jorge</au><au>Flores, Humberto</au><au>Osuna, Joel</au><au>Mendoza, Gretel</au><au>Soberón, Mario</au><au>Bravo, Alejandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>4989</spage><epage>12</epage><pages>4989-12</pages><artnum>4989</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Cyt and Cry toxins are different pore-forming proteins produced by Bacillus thuringiensis bacteria, and used in insect-pests control. Cry-toxins have a complex mechanism involving interaction with several proteins in the insect gut such as aminopeptidase N (APN), alkaline phosphatase (ALP) and cadherin (CAD). It was shown that the loop regions of domain II of Cry toxins participate in receptor binding. Cyt-toxins are dipteran specific and interact with membrane lipids. We show that Cry1Ab domain II loop3 is involved in binding to APN, ALP and CAD receptors since point mutation Cry1Ab-G439D affected binding to these proteins. We hypothesized that construction of Cyt1A-hybrid proteins providing a binding site that recognizes gut proteins in lepidopteran larvae could result in improved Cyt1Aa toxin toward lepidopteran larvae. We constructed hybrid Cyt1Aa-loop3 proteins with increased binding interaction to Manduca sexta receptors and increased toxicity against two Lepidopteran pests, M. sexta and Plutella xylostella . The hybrid Cyt1Aa-loop3 proteins were severely affected in mosquitocidal activity and showed partial hemolytic activity but retained their capacity to synergize Cry11Aa toxicity against mosquitos. Our data show that insect specificity of Cyt1Aa toxin can be modified by introduction of loop regions from another non-related toxin with different insect specificity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29563565</pmid><doi>10.1038/s41598-018-22740-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-03, Vol.8 (1), p.4989-12, Article 4989
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5862903
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 38
38/22
38/23
38/44
38/70
38/77
631/45/612/1237
631/61/338/469
64
82
82/29
Alkaline phosphatase
Aminopeptidase
Aquatic insects
Bacillus thuringiensis
Binding sites
Cadherins
Herbivores
Humanities and Social Sciences
Larvae
Lipids
multidisciplinary
Pest control
Pests
Point mutation
Pore-forming proteins
Proteins
Science
Science (multidisciplinary)
Synergism
Toxicity
Toxins
title Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Bacillus%20thuringiensis%20Cyt1Aa%20toxin%20specificity%20from%20dipteran%20to%20lepidopteran%20toxicity&rft.jtitle=Scientific%20reports&rft.au=Torres-Quintero,%20Mary-Carmen&rft.date=2018-03-21&rft.volume=8&rft.issue=1&rft.spage=4989&rft.epage=12&rft.pages=4989-12&rft.artnum=4989&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-22740-9&rft_dat=%3Cproquest_pubme%3E2017053708%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2016523660&rft_id=info:pmid/29563565&rfr_iscdi=true