The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics

Computational characterization of differential kinase activity from phosphoproteomics datasets is critical for correctly inferring cellular circuitry and how signaling cascades are altered in drug treatment and/or disease. Kinase-Substrate Enrichment Analysis (KSEA) offers a powerful approach to est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2017-11, Vol.33 (21), p.3489-3491
Hauptverfasser: Wiredja, Danica D, Koyutürk, Mehmet, Chance, Mark R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3491
container_issue 21
container_start_page 3489
container_title Bioinformatics (Oxford, England)
container_volume 33
creator Wiredja, Danica D
Koyutürk, Mehmet
Chance, Mark R
description Computational characterization of differential kinase activity from phosphoproteomics datasets is critical for correctly inferring cellular circuitry and how signaling cascades are altered in drug treatment and/or disease. Kinase-Substrate Enrichment Analysis (KSEA) offers a powerful approach to estimating changes in a kinase's activity based on the collective phosphorylation changes of its identified substrates. However, KSEA has been limited to programmers who are able to implement the algorithms. Thus, to make it accessible to the larger scientific community, we present a web-based application of this method: the KSEA App. Overall, we expect that this tool will offer a quick and user-friendly way of generating kinase activity estimates from high-throughput phosphoproteomics datasets. the KSEA App is a free online tool: casecpb.shinyapps.io/ksea/. The source code is on GitHub: github.com/casecpb/KSEA/. The application is also available as the R package "KSEAapp" on CRAN: CRAN.R-project.org/package=KSEAapp/. mark.chance@case.edu. Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btx415
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5860163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914580613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-7ad4478f3877e1a411be22c816c7e54237ccaed57d11f6f15fc9ceaf9cd09c73</originalsourceid><addsrcrecordid>eNqFUU1P3DAQtaqi8tWfUORjLymeOI6THiqtEC0IpB66d-M4465LEgfbu4V_j9HCCk4cRjOaefPmjR4hX4B9A9by0855N1kfRp2ciadduq9AfCAHwGtZVA3Ax13N-D45jPEfY0wwUX8i-2VTCwGCH5Cb5Qrp1Z_zBV3M83eq6X_sik5H7GnyfqD5Ar11U25QbZLbuPRA810MOBmkNviR3q31lFzKOjZI55WPOebgE_oxKzsme1YPET8_5yOy_Hm-PLsorn__ujxbXBdGAEuF1H1VycbyRkoEXQF0WJamgdpIFFXJpTEaeyF7AFtbENa0BrVtTc9aI_kR-bGlndfdiL3BKQU9qDm4UYcH5bVTbyeTW6m_fqNEUzOoeSb4-kwQ_N0aY1KjiwaHQU_o11GVnAlo2wx-FwotVKJhNTyxii3UBB9jQLtTBEw9-aje-qi2Pua9k9fv7LZejOOPoeehqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914580613</pqid></control><display><type>article</type><title>The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wiredja, Danica D ; Koyutürk, Mehmet ; Chance, Mark R</creator><contributor>Valencia, Alfonso</contributor><creatorcontrib>Wiredja, Danica D ; Koyutürk, Mehmet ; Chance, Mark R ; Valencia, Alfonso</creatorcontrib><description>Computational characterization of differential kinase activity from phosphoproteomics datasets is critical for correctly inferring cellular circuitry and how signaling cascades are altered in drug treatment and/or disease. Kinase-Substrate Enrichment Analysis (KSEA) offers a powerful approach to estimating changes in a kinase's activity based on the collective phosphorylation changes of its identified substrates. However, KSEA has been limited to programmers who are able to implement the algorithms. Thus, to make it accessible to the larger scientific community, we present a web-based application of this method: the KSEA App. Overall, we expect that this tool will offer a quick and user-friendly way of generating kinase activity estimates from high-throughput phosphoproteomics datasets. the KSEA App is a free online tool: casecpb.shinyapps.io/ksea/. The source code is on GitHub: github.com/casecpb/KSEA/. The application is also available as the R package "KSEAapp" on CRAN: CRAN.R-project.org/package=KSEAapp/. mark.chance@case.edu. Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btx415</identifier><identifier>PMID: 28655153</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>algorithms ; Applications Notes ; bioinformatics ; computer software ; data collection ; drug therapy ; enzyme activity ; enzymes ; Internet ; phosphorylation ; proteomics</subject><ispartof>Bioinformatics (Oxford, England), 2017-11, Vol.33 (21), p.3489-3491</ispartof><rights>The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-7ad4478f3877e1a411be22c816c7e54237ccaed57d11f6f15fc9ceaf9cd09c73</citedby><cites>FETCH-LOGICAL-c510t-7ad4478f3877e1a411be22c816c7e54237ccaed57d11f6f15fc9ceaf9cd09c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860163/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860163/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28655153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Valencia, Alfonso</contributor><creatorcontrib>Wiredja, Danica D</creatorcontrib><creatorcontrib>Koyutürk, Mehmet</creatorcontrib><creatorcontrib>Chance, Mark R</creatorcontrib><title>The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Computational characterization of differential kinase activity from phosphoproteomics datasets is critical for correctly inferring cellular circuitry and how signaling cascades are altered in drug treatment and/or disease. Kinase-Substrate Enrichment Analysis (KSEA) offers a powerful approach to estimating changes in a kinase's activity based on the collective phosphorylation changes of its identified substrates. However, KSEA has been limited to programmers who are able to implement the algorithms. Thus, to make it accessible to the larger scientific community, we present a web-based application of this method: the KSEA App. Overall, we expect that this tool will offer a quick and user-friendly way of generating kinase activity estimates from high-throughput phosphoproteomics datasets. the KSEA App is a free online tool: casecpb.shinyapps.io/ksea/. The source code is on GitHub: github.com/casecpb/KSEA/. The application is also available as the R package "KSEAapp" on CRAN: CRAN.R-project.org/package=KSEAapp/. mark.chance@case.edu. Supplementary data are available at Bioinformatics online.</description><subject>algorithms</subject><subject>Applications Notes</subject><subject>bioinformatics</subject><subject>computer software</subject><subject>data collection</subject><subject>drug therapy</subject><subject>enzyme activity</subject><subject>enzymes</subject><subject>Internet</subject><subject>phosphorylation</subject><subject>proteomics</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUU1P3DAQtaqi8tWfUORjLymeOI6THiqtEC0IpB66d-M4465LEgfbu4V_j9HCCk4cRjOaefPmjR4hX4B9A9by0855N1kfRp2ciadduq9AfCAHwGtZVA3Ax13N-D45jPEfY0wwUX8i-2VTCwGCH5Cb5Qrp1Z_zBV3M83eq6X_sik5H7GnyfqD5Ar11U25QbZLbuPRA810MOBmkNviR3q31lFzKOjZI55WPOebgE_oxKzsme1YPET8_5yOy_Hm-PLsorn__ujxbXBdGAEuF1H1VycbyRkoEXQF0WJamgdpIFFXJpTEaeyF7AFtbENa0BrVtTc9aI_kR-bGlndfdiL3BKQU9qDm4UYcH5bVTbyeTW6m_fqNEUzOoeSb4-kwQ_N0aY1KjiwaHQU_o11GVnAlo2wx-FwotVKJhNTyxii3UBB9jQLtTBEw9-aje-qi2Pua9k9fv7LZejOOPoeehqQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Wiredja, Danica D</creator><creator>Koyutürk, Mehmet</creator><creator>Chance, Mark R</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20171101</creationdate><title>The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics</title><author>Wiredja, Danica D ; Koyutürk, Mehmet ; Chance, Mark R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-7ad4478f3877e1a411be22c816c7e54237ccaed57d11f6f15fc9ceaf9cd09c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>algorithms</topic><topic>Applications Notes</topic><topic>bioinformatics</topic><topic>computer software</topic><topic>data collection</topic><topic>drug therapy</topic><topic>enzyme activity</topic><topic>enzymes</topic><topic>Internet</topic><topic>phosphorylation</topic><topic>proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiredja, Danica D</creatorcontrib><creatorcontrib>Koyutürk, Mehmet</creatorcontrib><creatorcontrib>Chance, Mark R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiredja, Danica D</au><au>Koyutürk, Mehmet</au><au>Chance, Mark R</au><au>Valencia, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>33</volume><issue>21</issue><spage>3489</spage><epage>3491</epage><pages>3489-3491</pages><issn>1367-4803</issn><issn>1460-2059</issn><eissn>1367-4811</eissn><abstract>Computational characterization of differential kinase activity from phosphoproteomics datasets is critical for correctly inferring cellular circuitry and how signaling cascades are altered in drug treatment and/or disease. Kinase-Substrate Enrichment Analysis (KSEA) offers a powerful approach to estimating changes in a kinase's activity based on the collective phosphorylation changes of its identified substrates. However, KSEA has been limited to programmers who are able to implement the algorithms. Thus, to make it accessible to the larger scientific community, we present a web-based application of this method: the KSEA App. Overall, we expect that this tool will offer a quick and user-friendly way of generating kinase activity estimates from high-throughput phosphoproteomics datasets. the KSEA App is a free online tool: casecpb.shinyapps.io/ksea/. The source code is on GitHub: github.com/casecpb/KSEA/. The application is also available as the R package "KSEAapp" on CRAN: CRAN.R-project.org/package=KSEAapp/. mark.chance@case.edu. Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28655153</pmid><doi>10.1093/bioinformatics/btx415</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2017-11, Vol.33 (21), p.3489-3491
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5860163
source Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects algorithms
Applications Notes
bioinformatics
computer software
data collection
drug therapy
enzyme activity
enzymes
Internet
phosphorylation
proteomics
title The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20KSEA%20App:%20a%20web-based%20tool%20for%20kinase%20activity%20inference%20from%20quantitative%20phosphoproteomics&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Wiredja,%20Danica%20D&rft.date=2017-11-01&rft.volume=33&rft.issue=21&rft.spage=3489&rft.epage=3491&rft.pages=3489-3491&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btx415&rft_dat=%3Cproquest_pubme%3E1914580613%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914580613&rft_id=info:pmid/28655153&rfr_iscdi=true