Situating Green Infrastructure in Context: A Framework for Adaptive Socio-Hydrology in Cities
Management of urban hydrologic processes using green infrastructure (GI) has largely focused on stormwater management. Thus, design and implementation of GI usually rely on physical site characteristics and local rainfall patterns, and do not typically account for human or social dimensions. This tr...
Gespeichert in:
Veröffentlicht in: | Water resources research 2017-12, Vol.53 (12), p.10139-10154 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10154 |
---|---|
container_issue | 12 |
container_start_page | 10139 |
container_title | Water resources research |
container_volume | 53 |
creator | Schifman, L A Herrmann, D L Shuster, W D Ossola, A Garmestani, A Hopton, M E |
description | Management of urban hydrologic processes using green infrastructure (GI) has largely focused on stormwater management. Thus, design and implementation of GI usually rely on physical site characteristics and local rainfall patterns, and do not typically account for human or social dimensions. This traditional approach leads to highly centralized stormwater management in a disconnected urban landscape, and can deemphasize additional benefits that GI offers, such as increased property value, greenspace aesthetics, heat island amelioration, carbon sequestration, and habitat for biodiversity. We propose a Framework for Adaptive Socio-Hydrology (FrASH) in which GI planning and implementation moves from a purely hydrology-driven perspective to an integrated socio-hydrological approach. This allows for an iterative, multifaceted decision-making process that would enable a network of stakeholders to collaboratively set a dynamic, context-guided project plan for the installation of GI, rather than a 'one-size-fits-all' installation. We explain how different sectors (e.g., governance, non-governmental organizations, academia, and industry) can create a connected network of organizations that work towards a common goal. Through a graphical Chambered Nautilus model, FrASH is experimentally applied to contrasting GI case studies and shows that this multi-stakeholder, connected, de-centralized network with a co-evolving decision-making project plan results in enhanced multi-functionality, potentially allowing for the management of resilience in urban systems at multiple scales. |
doi_str_mv | 10.1002/2017WR020926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5859331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2018667586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-6346f500df592f1c78c25f4baa31dd6d26768d8fece8f698f79699db9f6c05f43</originalsourceid><addsrcrecordid>eNpdkUtvUzEQhS1ERUNhxxpZsGHRC377ugukKKIPqRISBbFCluNH6nJjB9u3kH_f26ZUhdUs5ptzZuYA8Aqj9xgh8oEgLL9_QQQpIp6AGVaMdVJJ-hTMEGK0w1TJffC81iuEMONCPgP7RHEphCAz8OMittG0mFbwpHif4FkKxdRWRtvG4mFMcJFT83_aEZzD42LW_ncuP2HIBc6d2bR47eFFtjF3p1tX8pBX27uh2KKvL8BeMEP1L-_rAfh2_Onr4rQ7_3xytpifd4Yj3jpBmQgcIRe4IgFb2VvCA1saQ7FzwhEhRe_64K3vg1B9kEoo5ZYqCIsmkB6Ajzvdzbhce2d9asUMelPi2pStzibqfzspXupVvta854pSPAm82Qnk2qKuNjZvL21OydumMcOYcDRB7-5dSv41-tr0Olbrh8Ekn8eqpyR6ISTvxYS-_Q-9ymNJ0w80VgoRyQS7dT3cUbbkWosPDxtjpG_D1Y_DnfDXj698gP-mSW8AIYCfTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990274641</pqid></control><display><type>article</type><title>Situating Green Infrastructure in Context: A Framework for Adaptive Socio-Hydrology in Cities</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schifman, L A ; Herrmann, D L ; Shuster, W D ; Ossola, A ; Garmestani, A ; Hopton, M E</creator><creatorcontrib>Schifman, L A ; Herrmann, D L ; Shuster, W D ; Ossola, A ; Garmestani, A ; Hopton, M E</creatorcontrib><description>Management of urban hydrologic processes using green infrastructure (GI) has largely focused on stormwater management. Thus, design and implementation of GI usually rely on physical site characteristics and local rainfall patterns, and do not typically account for human or social dimensions. This traditional approach leads to highly centralized stormwater management in a disconnected urban landscape, and can deemphasize additional benefits that GI offers, such as increased property value, greenspace aesthetics, heat island amelioration, carbon sequestration, and habitat for biodiversity. We propose a Framework for Adaptive Socio-Hydrology (FrASH) in which GI planning and implementation moves from a purely hydrology-driven perspective to an integrated socio-hydrological approach. This allows for an iterative, multifaceted decision-making process that would enable a network of stakeholders to collaboratively set a dynamic, context-guided project plan for the installation of GI, rather than a 'one-size-fits-all' installation. We explain how different sectors (e.g., governance, non-governmental organizations, academia, and industry) can create a connected network of organizations that work towards a common goal. Through a graphical Chambered Nautilus model, FrASH is experimentally applied to contrasting GI case studies and shows that this multi-stakeholder, connected, de-centralized network with a co-evolving decision-making project plan results in enhanced multi-functionality, potentially allowing for the management of resilience in urban systems at multiple scales.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2017WR020926</identifier><identifier>PMID: 29576662</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Beautification projects ; Biodiversity ; Carbon sequestration ; Case studies ; Decision making ; Dimensions ; Ecosystem services ; Ecosystems ; Frameworks ; Governance ; Graphics ; Green infrastructure ; Hydrologic processes ; Hydrology ; Infrastructure ; Iterative methods ; NGOs ; Nongovernmental organizations ; Organizations ; Property values ; Puddling ; Rain ; Rainfall ; Rainfall patterns ; Real estate ; Social factors ; Social sciences ; Storms ; Stormwater ; Stormwater management ; Urban heat islands ; Water management</subject><ispartof>Water resources research, 2017-12, Vol.53 (12), p.10139-10154</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-6346f500df592f1c78c25f4baa31dd6d26768d8fece8f698f79699db9f6c05f43</citedby><cites>FETCH-LOGICAL-a505t-6346f500df592f1c78c25f4baa31dd6d26768d8fece8f698f79699db9f6c05f43</cites><orcidid>0000-0002-0507-6026 ; 0000-0003-4700-5530 ; 0000-0001-7688-0110 ; 0000000205076026 ; 0000000176880110 ; 0000000347005530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29576662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1411250$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schifman, L A</creatorcontrib><creatorcontrib>Herrmann, D L</creatorcontrib><creatorcontrib>Shuster, W D</creatorcontrib><creatorcontrib>Ossola, A</creatorcontrib><creatorcontrib>Garmestani, A</creatorcontrib><creatorcontrib>Hopton, M E</creatorcontrib><title>Situating Green Infrastructure in Context: A Framework for Adaptive Socio-Hydrology in Cities</title><title>Water resources research</title><addtitle>Water Resour Res</addtitle><description>Management of urban hydrologic processes using green infrastructure (GI) has largely focused on stormwater management. Thus, design and implementation of GI usually rely on physical site characteristics and local rainfall patterns, and do not typically account for human or social dimensions. This traditional approach leads to highly centralized stormwater management in a disconnected urban landscape, and can deemphasize additional benefits that GI offers, such as increased property value, greenspace aesthetics, heat island amelioration, carbon sequestration, and habitat for biodiversity. We propose a Framework for Adaptive Socio-Hydrology (FrASH) in which GI planning and implementation moves from a purely hydrology-driven perspective to an integrated socio-hydrological approach. This allows for an iterative, multifaceted decision-making process that would enable a network of stakeholders to collaboratively set a dynamic, context-guided project plan for the installation of GI, rather than a 'one-size-fits-all' installation. We explain how different sectors (e.g., governance, non-governmental organizations, academia, and industry) can create a connected network of organizations that work towards a common goal. Through a graphical Chambered Nautilus model, FrASH is experimentally applied to contrasting GI case studies and shows that this multi-stakeholder, connected, de-centralized network with a co-evolving decision-making project plan results in enhanced multi-functionality, potentially allowing for the management of resilience in urban systems at multiple scales.</description><subject>Beautification projects</subject><subject>Biodiversity</subject><subject>Carbon sequestration</subject><subject>Case studies</subject><subject>Decision making</subject><subject>Dimensions</subject><subject>Ecosystem services</subject><subject>Ecosystems</subject><subject>Frameworks</subject><subject>Governance</subject><subject>Graphics</subject><subject>Green infrastructure</subject><subject>Hydrologic processes</subject><subject>Hydrology</subject><subject>Infrastructure</subject><subject>Iterative methods</subject><subject>NGOs</subject><subject>Nongovernmental organizations</subject><subject>Organizations</subject><subject>Property values</subject><subject>Puddling</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall patterns</subject><subject>Real estate</subject><subject>Social factors</subject><subject>Social sciences</subject><subject>Storms</subject><subject>Stormwater</subject><subject>Stormwater management</subject><subject>Urban heat islands</subject><subject>Water management</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkUtvUzEQhS1ERUNhxxpZsGHRC377ugukKKIPqRISBbFCluNH6nJjB9u3kH_f26ZUhdUs5ptzZuYA8Aqj9xgh8oEgLL9_QQQpIp6AGVaMdVJJ-hTMEGK0w1TJffC81iuEMONCPgP7RHEphCAz8OMittG0mFbwpHif4FkKxdRWRtvG4mFMcJFT83_aEZzD42LW_ncuP2HIBc6d2bR47eFFtjF3p1tX8pBX27uh2KKvL8BeMEP1L-_rAfh2_Onr4rQ7_3xytpifd4Yj3jpBmQgcIRe4IgFb2VvCA1saQ7FzwhEhRe_64K3vg1B9kEoo5ZYqCIsmkB6Ajzvdzbhce2d9asUMelPi2pStzibqfzspXupVvta854pSPAm82Qnk2qKuNjZvL21OydumMcOYcDRB7-5dSv41-tr0Olbrh8Ekn8eqpyR6ISTvxYS-_Q-9ymNJ0w80VgoRyQS7dT3cUbbkWosPDxtjpG_D1Y_DnfDXj698gP-mSW8AIYCfTQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Schifman, L A</creator><creator>Herrmann, D L</creator><creator>Shuster, W D</creator><creator>Ossola, A</creator><creator>Garmestani, A</creator><creator>Hopton, M E</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0507-6026</orcidid><orcidid>https://orcid.org/0000-0003-4700-5530</orcidid><orcidid>https://orcid.org/0000-0001-7688-0110</orcidid><orcidid>https://orcid.org/0000000205076026</orcidid><orcidid>https://orcid.org/0000000176880110</orcidid><orcidid>https://orcid.org/0000000347005530</orcidid></search><sort><creationdate>20171201</creationdate><title>Situating Green Infrastructure in Context: A Framework for Adaptive Socio-Hydrology in Cities</title><author>Schifman, L A ; Herrmann, D L ; Shuster, W D ; Ossola, A ; Garmestani, A ; Hopton, M E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-6346f500df592f1c78c25f4baa31dd6d26768d8fece8f698f79699db9f6c05f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Beautification projects</topic><topic>Biodiversity</topic><topic>Carbon sequestration</topic><topic>Case studies</topic><topic>Decision making</topic><topic>Dimensions</topic><topic>Ecosystem services</topic><topic>Ecosystems</topic><topic>Frameworks</topic><topic>Governance</topic><topic>Graphics</topic><topic>Green infrastructure</topic><topic>Hydrologic processes</topic><topic>Hydrology</topic><topic>Infrastructure</topic><topic>Iterative methods</topic><topic>NGOs</topic><topic>Nongovernmental organizations</topic><topic>Organizations</topic><topic>Property values</topic><topic>Puddling</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall patterns</topic><topic>Real estate</topic><topic>Social factors</topic><topic>Social sciences</topic><topic>Storms</topic><topic>Stormwater</topic><topic>Stormwater management</topic><topic>Urban heat islands</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schifman, L A</creatorcontrib><creatorcontrib>Herrmann, D L</creatorcontrib><creatorcontrib>Shuster, W D</creatorcontrib><creatorcontrib>Ossola, A</creatorcontrib><creatorcontrib>Garmestani, A</creatorcontrib><creatorcontrib>Hopton, M E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schifman, L A</au><au>Herrmann, D L</au><au>Shuster, W D</au><au>Ossola, A</au><au>Garmestani, A</au><au>Hopton, M E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Situating Green Infrastructure in Context: A Framework for Adaptive Socio-Hydrology in Cities</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour Res</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>53</volume><issue>12</issue><spage>10139</spage><epage>10154</epage><pages>10139-10154</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Management of urban hydrologic processes using green infrastructure (GI) has largely focused on stormwater management. Thus, design and implementation of GI usually rely on physical site characteristics and local rainfall patterns, and do not typically account for human or social dimensions. This traditional approach leads to highly centralized stormwater management in a disconnected urban landscape, and can deemphasize additional benefits that GI offers, such as increased property value, greenspace aesthetics, heat island amelioration, carbon sequestration, and habitat for biodiversity. We propose a Framework for Adaptive Socio-Hydrology (FrASH) in which GI planning and implementation moves from a purely hydrology-driven perspective to an integrated socio-hydrological approach. This allows for an iterative, multifaceted decision-making process that would enable a network of stakeholders to collaboratively set a dynamic, context-guided project plan for the installation of GI, rather than a 'one-size-fits-all' installation. We explain how different sectors (e.g., governance, non-governmental organizations, academia, and industry) can create a connected network of organizations that work towards a common goal. Through a graphical Chambered Nautilus model, FrASH is experimentally applied to contrasting GI case studies and shows that this multi-stakeholder, connected, de-centralized network with a co-evolving decision-making project plan results in enhanced multi-functionality, potentially allowing for the management of resilience in urban systems at multiple scales.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>29576662</pmid><doi>10.1002/2017WR020926</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0507-6026</orcidid><orcidid>https://orcid.org/0000-0003-4700-5530</orcidid><orcidid>https://orcid.org/0000-0001-7688-0110</orcidid><orcidid>https://orcid.org/0000000205076026</orcidid><orcidid>https://orcid.org/0000000176880110</orcidid><orcidid>https://orcid.org/0000000347005530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2017-12, Vol.53 (12), p.10139-10154 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5859331 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Beautification projects Biodiversity Carbon sequestration Case studies Decision making Dimensions Ecosystem services Ecosystems Frameworks Governance Graphics Green infrastructure Hydrologic processes Hydrology Infrastructure Iterative methods NGOs Nongovernmental organizations Organizations Property values Puddling Rain Rainfall Rainfall patterns Real estate Social factors Social sciences Storms Stormwater Stormwater management Urban heat islands Water management |
title | Situating Green Infrastructure in Context: A Framework for Adaptive Socio-Hydrology in Cities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Situating%20Green%20Infrastructure%20in%20Context:%20A%20Framework%20for%20Adaptive%20Socio-Hydrology%20in%20Cities&rft.jtitle=Water%20resources%20research&rft.au=Schifman,%20L%20A&rft.date=2017-12-01&rft.volume=53&rft.issue=12&rft.spage=10139&rft.epage=10154&rft.pages=10139-10154&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2017WR020926&rft_dat=%3Cproquest_pubme%3E2018667586%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990274641&rft_id=info:pmid/29576662&rfr_iscdi=true |