Investigation of Amide Bond Formation during Dehydrophos Biosynthesis

Dehydrophos is a tripeptide phosphonate antibiotic produced by Streptomyces luridus. Its biosynthetic pathway involves the use of aminoacyl-tRNA (aa-tRNA) for amide bond formation. The first amide bond during biosynthesis is formed by DhpH-C, a peptidyltransferase that utilizes Leu-tRNALeu. DhpH-C i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2018-03, Vol.13 (3), p.537-541
Hauptverfasser: Ulrich, Emily C, Bougioukou, Despina J, van der Donk, Wilfred A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 541
container_issue 3
container_start_page 537
container_title ACS chemical biology
container_volume 13
creator Ulrich, Emily C
Bougioukou, Despina J
van der Donk, Wilfred A
description Dehydrophos is a tripeptide phosphonate antibiotic produced by Streptomyces luridus. Its biosynthetic pathway involves the use of aminoacyl-tRNA (aa-tRNA) for amide bond formation. The first amide bond during biosynthesis is formed by DhpH-C, a peptidyltransferase that utilizes Leu-tRNALeu. DhpH-C is a member of a burgeoning family of natural product biosynthetic enzymes that make use of aa-tRNA outside of canonical translation activities in the cell. Here, we used site-directed mutagenesis of both DhpH-C and tRNALeu to investigate the enzyme mechanism and substrate specificity, respectively, and analyzed the substrate scope for the production of a set of dipeptides. DhpH-C appears to recognize both the amino acyl group on the tRNA and the tRNA acceptor stem, and the enzyme can accept other hydrophobic residues, in addition to leucine. These results contribute to a better understanding of enzyme-aa-tRNA interactions and the growing exploration of aa-tRNA usage beyond translation.
doi_str_mv 10.1021/acschembio.7b00949
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5856630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e65351164</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-ebc0ab0ab6aaa93028ae83cf68d421b323d2456ef89ecb0d066010e0d471aacd3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMotlZfwIPsC-yaf5vuXoS2tlooeNFzyCbZbko3Kcm20Lc3srXqRRiYITPfl5kfAPcIZghi9ChkkI1uK-OycQVhScsLMER5TtOiJOPLc43LAbgJYQMhJawor8EAlwSSnOZDMF_agw6dWYvOOJu4Opm0Rulk6qxKFs63_bvae2PXybNujsq7XeNCMjUuHG3X6GDCLbiqxTbou1MegY_F_H32mq7eXpazySoVlKIu1ZWEoorBhBBxBVwIXRBZs0JRjCqCicI0Z7ouSi0rqCBjEEENFR0jIaQiI_DU--72VauV1LbzYst33rTCH7kThv_tWNPwtTvwvMgZizePAO4NpHcheF2ftQjyL6j8Byo_QY2ih9-_niXfFONA1g9EMd-4vbcRwn-On08diE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigation of Amide Bond Formation during Dehydrophos Biosynthesis</title><source>ACS Publications</source><creator>Ulrich, Emily C ; Bougioukou, Despina J ; van der Donk, Wilfred A</creator><creatorcontrib>Ulrich, Emily C ; Bougioukou, Despina J ; van der Donk, Wilfred A</creatorcontrib><description>Dehydrophos is a tripeptide phosphonate antibiotic produced by Streptomyces luridus. Its biosynthetic pathway involves the use of aminoacyl-tRNA (aa-tRNA) for amide bond formation. The first amide bond during biosynthesis is formed by DhpH-C, a peptidyltransferase that utilizes Leu-tRNALeu. DhpH-C is a member of a burgeoning family of natural product biosynthetic enzymes that make use of aa-tRNA outside of canonical translation activities in the cell. Here, we used site-directed mutagenesis of both DhpH-C and tRNALeu to investigate the enzyme mechanism and substrate specificity, respectively, and analyzed the substrate scope for the production of a set of dipeptides. DhpH-C appears to recognize both the amino acyl group on the tRNA and the tRNA acceptor stem, and the enzyme can accept other hydrophobic residues, in addition to leucine. These results contribute to a better understanding of enzyme-aa-tRNA interactions and the growing exploration of aa-tRNA usage beyond translation.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.7b00949</identifier><identifier>PMID: 29303545</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS chemical biology, 2018-03, Vol.13 (3), p.537-541</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-ebc0ab0ab6aaa93028ae83cf68d421b323d2456ef89ecb0d066010e0d471aacd3</citedby><cites>FETCH-LOGICAL-a441t-ebc0ab0ab6aaa93028ae83cf68d421b323d2456ef89ecb0d066010e0d471aacd3</cites><orcidid>0000-0002-5467-7071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.7b00949$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.7b00949$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29303545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ulrich, Emily C</creatorcontrib><creatorcontrib>Bougioukou, Despina J</creatorcontrib><creatorcontrib>van der Donk, Wilfred A</creatorcontrib><title>Investigation of Amide Bond Formation during Dehydrophos Biosynthesis</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Dehydrophos is a tripeptide phosphonate antibiotic produced by Streptomyces luridus. Its biosynthetic pathway involves the use of aminoacyl-tRNA (aa-tRNA) for amide bond formation. The first amide bond during biosynthesis is formed by DhpH-C, a peptidyltransferase that utilizes Leu-tRNALeu. DhpH-C is a member of a burgeoning family of natural product biosynthetic enzymes that make use of aa-tRNA outside of canonical translation activities in the cell. Here, we used site-directed mutagenesis of both DhpH-C and tRNALeu to investigate the enzyme mechanism and substrate specificity, respectively, and analyzed the substrate scope for the production of a set of dipeptides. DhpH-C appears to recognize both the amino acyl group on the tRNA and the tRNA acceptor stem, and the enzyme can accept other hydrophobic residues, in addition to leucine. These results contribute to a better understanding of enzyme-aa-tRNA interactions and the growing exploration of aa-tRNA usage beyond translation.</description><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMotlZfwIPsC-yaf5vuXoS2tlooeNFzyCbZbko3Kcm20Lc3srXqRRiYITPfl5kfAPcIZghi9ChkkI1uK-OycQVhScsLMER5TtOiJOPLc43LAbgJYQMhJawor8EAlwSSnOZDMF_agw6dWYvOOJu4Opm0Rulk6qxKFs63_bvae2PXybNujsq7XeNCMjUuHG3X6GDCLbiqxTbou1MegY_F_H32mq7eXpazySoVlKIu1ZWEoorBhBBxBVwIXRBZs0JRjCqCicI0Z7ouSi0rqCBjEEENFR0jIaQiI_DU--72VauV1LbzYst33rTCH7kThv_tWNPwtTvwvMgZizePAO4NpHcheF2ftQjyL6j8Byo_QY2ih9-_niXfFONA1g9EMd-4vbcRwn-On08diE8</recordid><startdate>20180316</startdate><enddate>20180316</enddate><creator>Ulrich, Emily C</creator><creator>Bougioukou, Despina J</creator><creator>van der Donk, Wilfred A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5467-7071</orcidid></search><sort><creationdate>20180316</creationdate><title>Investigation of Amide Bond Formation during Dehydrophos Biosynthesis</title><author>Ulrich, Emily C ; Bougioukou, Despina J ; van der Donk, Wilfred A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-ebc0ab0ab6aaa93028ae83cf68d421b323d2456ef89ecb0d066010e0d471aacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulrich, Emily C</creatorcontrib><creatorcontrib>Bougioukou, Despina J</creatorcontrib><creatorcontrib>van der Donk, Wilfred A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulrich, Emily C</au><au>Bougioukou, Despina J</au><au>van der Donk, Wilfred A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Amide Bond Formation during Dehydrophos Biosynthesis</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2018-03-16</date><risdate>2018</risdate><volume>13</volume><issue>3</issue><spage>537</spage><epage>541</epage><pages>537-541</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Dehydrophos is a tripeptide phosphonate antibiotic produced by Streptomyces luridus. Its biosynthetic pathway involves the use of aminoacyl-tRNA (aa-tRNA) for amide bond formation. The first amide bond during biosynthesis is formed by DhpH-C, a peptidyltransferase that utilizes Leu-tRNALeu. DhpH-C is a member of a burgeoning family of natural product biosynthetic enzymes that make use of aa-tRNA outside of canonical translation activities in the cell. Here, we used site-directed mutagenesis of both DhpH-C and tRNALeu to investigate the enzyme mechanism and substrate specificity, respectively, and analyzed the substrate scope for the production of a set of dipeptides. DhpH-C appears to recognize both the amino acyl group on the tRNA and the tRNA acceptor stem, and the enzyme can accept other hydrophobic residues, in addition to leucine. These results contribute to a better understanding of enzyme-aa-tRNA interactions and the growing exploration of aa-tRNA usage beyond translation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29303545</pmid><doi>10.1021/acschembio.7b00949</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5467-7071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2018-03, Vol.13 (3), p.537-541
issn 1554-8929
1554-8937
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5856630
source ACS Publications
title Investigation of Amide Bond Formation during Dehydrophos Biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Amide%20Bond%20Formation%20during%20Dehydrophos%20Biosynthesis&rft.jtitle=ACS%20chemical%20biology&rft.au=Ulrich,%20Emily%20C&rft.date=2018-03-16&rft.volume=13&rft.issue=3&rft.spage=537&rft.epage=541&rft.pages=537-541&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.7b00949&rft_dat=%3Cacs_pubme%3Ee65351164%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29303545&rfr_iscdi=true