Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat

Leaf hyperspectral reflectance can be used by the wheat physiology and breeding communities to rapidly estimate Rubisco activity, electron transport rate, leaf nitrogen, leaf dry mass per area, and relative chlorophyll content. Abstract Improving photosynthesis to raise wheat yield potential has eme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2018-01, Vol.69 (3), p.483-496
Hauptverfasser: Silva-Perez, Viridiana, Molero, Gemma, Serbin, Shawn P, Condon, Anthony G, Reynolds, Matthew P, Furbank, Robert T, Evans, John R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 496
container_issue 3
container_start_page 483
container_title Journal of experimental botany
container_volume 69
creator Silva-Perez, Viridiana
Molero, Gemma
Serbin, Shawn P
Condon, Anthony G
Reynolds, Matthew P
Furbank, Robert T
Evans, John R
description Leaf hyperspectral reflectance can be used by the wheat physiology and breeding communities to rapidly estimate Rubisco activity, electron transport rate, leaf nitrogen, leaf dry mass per area, and relative chlorophyll content. Abstract Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. Photosynthesis-related traits, such as nitrogen per unit leaf area (Narea) and leaf dry mass per area (LMA), require laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, such as maximum Rubisco activity normalized to 25 °C (Vcmax25) and electron transport rate (J), require time-consuming gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350-2500 nm) can be used to rapidly estimate these traits on intact wheat leaves. Predictive models were constructed using gas exchange and hyperspectral reflectance data from 76 genotypes grown in glasshouses with different nitrogen levels and/or in the field under yield potential conditions. Models were developed using half of the observed data with the remainder used for validation, yielding correlation coefficients (R2 values) of 0.62 for Vcmax25, 0.7 for J, 0.81 for SPAD, 0.89 for LMA, and 0.93 for Narea, with bias
doi_str_mv 10.1093/jxb/erx421
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5853784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jxb/erx421</oup_id><sourcerecordid>1989556259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-bafb2564a92017640041c65968d0e7c5dc5e1aa86b53f2f793e2a57ef99c39903</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxYMo7rh68QNIEAQR2s2_SncugizurrDgRW9CSGeqt7N0d9qkW3e-vRlnXPSil0qR_HipV4-Q55y95czIs9u79gzTnRL8AdlwpVkllOQPyYYxISpmoD4hT3K-ZYwBA3hMToSRzGjON-Tr1W7GlGf0S3IDTdgNpXWTR-oydXSJcSiFjujympC2Ifoex-AL7KYtnftdDnGIN79uikZYMg0T_dGjW56SR50bMj47nqfky8WHz-dX1fWny4_n768rD1ItVeu6VoBWzgjGa60YU9xrMLrZMqw9bD0gd67RLchOdLWRKBzU2BnjpTFMnpJ3B915bUfcepz2ZuycwujSzkYX7N8vU-jtTfxuoQFZN6oIvDwIxLwEm31Y0Pc-TlPZheVKmtroAr0-_pLitxXzYseQPQ6DmzCu2Yr94LUAJf-LctMYAC3AFPTNAfUp5lz2fz82Z3Yfry3x2kO8BX7xp9F79HeeBXh1NLLO_xL6CbpUrxU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989556259</pqid></control><display><type>article</type><title>Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Silva-Perez, Viridiana ; Molero, Gemma ; Serbin, Shawn P ; Condon, Anthony G ; Reynolds, Matthew P ; Furbank, Robert T ; Evans, John R</creator><creatorcontrib>Silva-Perez, Viridiana ; Molero, Gemma ; Serbin, Shawn P ; Condon, Anthony G ; Reynolds, Matthew P ; Furbank, Robert T ; Evans, John R ; Brookhaven National Laboratory (BNL), Upton, NY (United States) ; Australian National Univ., Canberra, ACT (Australia) ; CSIRO Agriculture, Canberra, ACT (Australia) ; International Maize and Wheat Improvement Centre (CIMMYT), Mexico City (Mexico)</creatorcontrib><description>Leaf hyperspectral reflectance can be used by the wheat physiology and breeding communities to rapidly estimate Rubisco activity, electron transport rate, leaf nitrogen, leaf dry mass per area, and relative chlorophyll content. Abstract Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. Photosynthesis-related traits, such as nitrogen per unit leaf area (Narea) and leaf dry mass per area (LMA), require laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, such as maximum Rubisco activity normalized to 25 °C (Vcmax25) and electron transport rate (J), require time-consuming gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350-2500 nm) can be used to rapidly estimate these traits on intact wheat leaves. Predictive models were constructed using gas exchange and hyperspectral reflectance data from 76 genotypes grown in glasshouses with different nitrogen levels and/or in the field under yield potential conditions. Models were developed using half of the observed data with the remainder used for validation, yielding correlation coefficients (R2 values) of 0.62 for Vcmax25, 0.7 for J, 0.81 for SPAD, 0.89 for LMA, and 0.93 for Narea, with bias &lt;0.7%. The models were tested on elite lines and landraces that had not been used to create the models. The bias varied between −2.3% and −5.5% while relative error of prediction was similar for SPAD but slightly greater for LMA and Narea.</description><identifier>ISSN: 0022-0957</identifier><identifier>ISSN: 1460-2431</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erx421</identifier><identifier>PMID: 29309611</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Carbon Dioxide - physiology ; electron transfer ; electron transport rate ; enzyme activity ; gas exchange ; genotype ; grain yield ; greenhouses ; hyperspectral reflectance ; landraces ; leaf area ; leaf dry mass per area ; leaf nitrogen ; leaves ; nitrogen ; partial least squares ; photosynthesis ; Photosynthesis - physiology ; physiologists ; Plant Leaves - physiology ; prediction ; reflectance ; Research Papers ; ribulose-bisphosphate carboxylase ; Rubisco ; specific leaf weight ; Spectrophotometry, Infrared - instrumentation ; Spectrophotometry, Infrared - methods ; Triticum ; Triticum - physiology ; Triticum aestivum ; velocity of carboxylation ; wheat</subject><ispartof>Journal of experimental botany, 2018-01, Vol.69 (3), p.483-496</ispartof><rights>The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2017</rights><rights>The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-bafb2564a92017640041c65968d0e7c5dc5e1aa86b53f2f793e2a57ef99c39903</citedby><cites>FETCH-LOGICAL-c534t-bafb2564a92017640041c65968d0e7c5dc5e1aa86b53f2f793e2a57ef99c39903</cites><orcidid>0000-0001-8700-6613 ; 0000-0003-1379-3532 ; 0000-0002-6431-7563 ; 0000-0001-5653-1802 ; 0000-0003-4136-8971 ; 0000-0002-4291-4316 ; 0000000242914316 ; 0000000264317563 ; 0000000313793532 ; 0000000341368971 ; 0000000187006613 ; 0000000156531802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29309611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1439796$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva-Perez, Viridiana</creatorcontrib><creatorcontrib>Molero, Gemma</creatorcontrib><creatorcontrib>Serbin, Shawn P</creatorcontrib><creatorcontrib>Condon, Anthony G</creatorcontrib><creatorcontrib>Reynolds, Matthew P</creatorcontrib><creatorcontrib>Furbank, Robert T</creatorcontrib><creatorcontrib>Evans, John R</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Australian National Univ., Canberra, ACT (Australia)</creatorcontrib><creatorcontrib>CSIRO Agriculture, Canberra, ACT (Australia)</creatorcontrib><creatorcontrib>International Maize and Wheat Improvement Centre (CIMMYT), Mexico City (Mexico)</creatorcontrib><title>Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Leaf hyperspectral reflectance can be used by the wheat physiology and breeding communities to rapidly estimate Rubisco activity, electron transport rate, leaf nitrogen, leaf dry mass per area, and relative chlorophyll content. Abstract Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. Photosynthesis-related traits, such as nitrogen per unit leaf area (Narea) and leaf dry mass per area (LMA), require laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, such as maximum Rubisco activity normalized to 25 °C (Vcmax25) and electron transport rate (J), require time-consuming gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350-2500 nm) can be used to rapidly estimate these traits on intact wheat leaves. Predictive models were constructed using gas exchange and hyperspectral reflectance data from 76 genotypes grown in glasshouses with different nitrogen levels and/or in the field under yield potential conditions. Models were developed using half of the observed data with the remainder used for validation, yielding correlation coefficients (R2 values) of 0.62 for Vcmax25, 0.7 for J, 0.81 for SPAD, 0.89 for LMA, and 0.93 for Narea, with bias &lt;0.7%. The models were tested on elite lines and landraces that had not been used to create the models. The bias varied between −2.3% and −5.5% while relative error of prediction was similar for SPAD but slightly greater for LMA and Narea.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Carbon Dioxide - physiology</subject><subject>electron transfer</subject><subject>electron transport rate</subject><subject>enzyme activity</subject><subject>gas exchange</subject><subject>genotype</subject><subject>grain yield</subject><subject>greenhouses</subject><subject>hyperspectral reflectance</subject><subject>landraces</subject><subject>leaf area</subject><subject>leaf dry mass per area</subject><subject>leaf nitrogen</subject><subject>leaves</subject><subject>nitrogen</subject><subject>partial least squares</subject><subject>photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>physiologists</subject><subject>Plant Leaves - physiology</subject><subject>prediction</subject><subject>reflectance</subject><subject>Research Papers</subject><subject>ribulose-bisphosphate carboxylase</subject><subject>Rubisco</subject><subject>specific leaf weight</subject><subject>Spectrophotometry, Infrared - instrumentation</subject><subject>Spectrophotometry, Infrared - methods</subject><subject>Triticum</subject><subject>Triticum - physiology</subject><subject>Triticum aestivum</subject><subject>velocity of carboxylation</subject><subject>wheat</subject><issn>0022-0957</issn><issn>1460-2431</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU-LFDEQxYMo7rh68QNIEAQR2s2_SncugizurrDgRW9CSGeqt7N0d9qkW3e-vRlnXPSil0qR_HipV4-Q55y95czIs9u79gzTnRL8AdlwpVkllOQPyYYxISpmoD4hT3K-ZYwBA3hMToSRzGjON-Tr1W7GlGf0S3IDTdgNpXWTR-oydXSJcSiFjujympC2Ifoex-AL7KYtnftdDnGIN79uikZYMg0T_dGjW56SR50bMj47nqfky8WHz-dX1fWny4_n768rD1ItVeu6VoBWzgjGa60YU9xrMLrZMqw9bD0gd67RLchOdLWRKBzU2BnjpTFMnpJ3B915bUfcepz2ZuycwujSzkYX7N8vU-jtTfxuoQFZN6oIvDwIxLwEm31Y0Pc-TlPZheVKmtroAr0-_pLitxXzYseQPQ6DmzCu2Yr94LUAJf-LctMYAC3AFPTNAfUp5lz2fz82Z3Yfry3x2kO8BX7xp9F79HeeBXh1NLLO_xL6CbpUrxU</recordid><startdate>20180123</startdate><enddate>20180123</enddate><creator>Silva-Perez, Viridiana</creator><creator>Molero, Gemma</creator><creator>Serbin, Shawn P</creator><creator>Condon, Anthony G</creator><creator>Reynolds, Matthew P</creator><creator>Furbank, Robert T</creator><creator>Evans, John R</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8700-6613</orcidid><orcidid>https://orcid.org/0000-0003-1379-3532</orcidid><orcidid>https://orcid.org/0000-0002-6431-7563</orcidid><orcidid>https://orcid.org/0000-0001-5653-1802</orcidid><orcidid>https://orcid.org/0000-0003-4136-8971</orcidid><orcidid>https://orcid.org/0000-0002-4291-4316</orcidid><orcidid>https://orcid.org/0000000242914316</orcidid><orcidid>https://orcid.org/0000000264317563</orcidid><orcidid>https://orcid.org/0000000313793532</orcidid><orcidid>https://orcid.org/0000000341368971</orcidid><orcidid>https://orcid.org/0000000187006613</orcidid><orcidid>https://orcid.org/0000000156531802</orcidid></search><sort><creationdate>20180123</creationdate><title>Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat</title><author>Silva-Perez, Viridiana ; Molero, Gemma ; Serbin, Shawn P ; Condon, Anthony G ; Reynolds, Matthew P ; Furbank, Robert T ; Evans, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-bafb2564a92017640041c65968d0e7c5dc5e1aa86b53f2f793e2a57ef99c39903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Carbon Dioxide - physiology</topic><topic>electron transfer</topic><topic>electron transport rate</topic><topic>enzyme activity</topic><topic>gas exchange</topic><topic>genotype</topic><topic>grain yield</topic><topic>greenhouses</topic><topic>hyperspectral reflectance</topic><topic>landraces</topic><topic>leaf area</topic><topic>leaf dry mass per area</topic><topic>leaf nitrogen</topic><topic>leaves</topic><topic>nitrogen</topic><topic>partial least squares</topic><topic>photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>physiologists</topic><topic>Plant Leaves - physiology</topic><topic>prediction</topic><topic>reflectance</topic><topic>Research Papers</topic><topic>ribulose-bisphosphate carboxylase</topic><topic>Rubisco</topic><topic>specific leaf weight</topic><topic>Spectrophotometry, Infrared - instrumentation</topic><topic>Spectrophotometry, Infrared - methods</topic><topic>Triticum</topic><topic>Triticum - physiology</topic><topic>Triticum aestivum</topic><topic>velocity of carboxylation</topic><topic>wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva-Perez, Viridiana</creatorcontrib><creatorcontrib>Molero, Gemma</creatorcontrib><creatorcontrib>Serbin, Shawn P</creatorcontrib><creatorcontrib>Condon, Anthony G</creatorcontrib><creatorcontrib>Reynolds, Matthew P</creatorcontrib><creatorcontrib>Furbank, Robert T</creatorcontrib><creatorcontrib>Evans, John R</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Australian National Univ., Canberra, ACT (Australia)</creatorcontrib><creatorcontrib>CSIRO Agriculture, Canberra, ACT (Australia)</creatorcontrib><creatorcontrib>International Maize and Wheat Improvement Centre (CIMMYT), Mexico City (Mexico)</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva-Perez, Viridiana</au><au>Molero, Gemma</au><au>Serbin, Shawn P</au><au>Condon, Anthony G</au><au>Reynolds, Matthew P</au><au>Furbank, Robert T</au><au>Evans, John R</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><aucorp>Australian National Univ., Canberra, ACT (Australia)</aucorp><aucorp>CSIRO Agriculture, Canberra, ACT (Australia)</aucorp><aucorp>International Maize and Wheat Improvement Centre (CIMMYT), Mexico City (Mexico)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2018-01-23</date><risdate>2018</risdate><volume>69</volume><issue>3</issue><spage>483</spage><epage>496</epage><pages>483-496</pages><issn>0022-0957</issn><issn>1460-2431</issn><eissn>1460-2431</eissn><abstract>Leaf hyperspectral reflectance can be used by the wheat physiology and breeding communities to rapidly estimate Rubisco activity, electron transport rate, leaf nitrogen, leaf dry mass per area, and relative chlorophyll content. Abstract Improving photosynthesis to raise wheat yield potential has emerged as a major target for wheat physiologists. Photosynthesis-related traits, such as nitrogen per unit leaf area (Narea) and leaf dry mass per area (LMA), require laborious, destructive, laboratory-based methods, while physiological traits underpinning photosynthetic capacity, such as maximum Rubisco activity normalized to 25 °C (Vcmax25) and electron transport rate (J), require time-consuming gas exchange measurements. The aim of this study was to assess whether hyperspectral reflectance (350-2500 nm) can be used to rapidly estimate these traits on intact wheat leaves. Predictive models were constructed using gas exchange and hyperspectral reflectance data from 76 genotypes grown in glasshouses with different nitrogen levels and/or in the field under yield potential conditions. Models were developed using half of the observed data with the remainder used for validation, yielding correlation coefficients (R2 values) of 0.62 for Vcmax25, 0.7 for J, 0.81 for SPAD, 0.89 for LMA, and 0.93 for Narea, with bias &lt;0.7%. The models were tested on elite lines and landraces that had not been used to create the models. The bias varied between −2.3% and −5.5% while relative error of prediction was similar for SPAD but slightly greater for LMA and Narea.</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>29309611</pmid><doi>10.1093/jxb/erx421</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8700-6613</orcidid><orcidid>https://orcid.org/0000-0003-1379-3532</orcidid><orcidid>https://orcid.org/0000-0002-6431-7563</orcidid><orcidid>https://orcid.org/0000-0001-5653-1802</orcidid><orcidid>https://orcid.org/0000-0003-4136-8971</orcidid><orcidid>https://orcid.org/0000-0002-4291-4316</orcidid><orcidid>https://orcid.org/0000000242914316</orcidid><orcidid>https://orcid.org/0000000264317563</orcidid><orcidid>https://orcid.org/0000000313793532</orcidid><orcidid>https://orcid.org/0000000341368971</orcidid><orcidid>https://orcid.org/0000000187006613</orcidid><orcidid>https://orcid.org/0000000156531802</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2018-01, Vol.69 (3), p.483-496
issn 0022-0957
1460-2431
1460-2431
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5853784
source MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects BASIC BIOLOGICAL SCIENCES
Carbon Dioxide - physiology
electron transfer
electron transport rate
enzyme activity
gas exchange
genotype
grain yield
greenhouses
hyperspectral reflectance
landraces
leaf area
leaf dry mass per area
leaf nitrogen
leaves
nitrogen
partial least squares
photosynthesis
Photosynthesis - physiology
physiologists
Plant Leaves - physiology
prediction
reflectance
Research Papers
ribulose-bisphosphate carboxylase
Rubisco
specific leaf weight
Spectrophotometry, Infrared - instrumentation
Spectrophotometry, Infrared - methods
Triticum
Triticum - physiology
Triticum aestivum
velocity of carboxylation
wheat
title Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20reflectance%20as%20a%20tool%20to%20measure%20biochemical%20and%20physiological%20traits%20in%20wheat&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Silva-Perez,%20Viridiana&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018-01-23&rft.volume=69&rft.issue=3&rft.spage=483&rft.epage=496&rft.pages=483-496&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/erx421&rft_dat=%3Cproquest_pubme%3E1989556259%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989556259&rft_id=info:pmid/29309611&rft_oup_id=10.1093/jxb/erx421&rfr_iscdi=true