Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field

Key message The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2018-04, Vol.131 (4), p.861-871
Hauptverfasser: Koller, Teresa, Brunner, Susanne, Herren, Gerhard, Hurni, Severine, Keller, Beat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 871
container_issue 4
container_start_page 861
container_title Theoretical and applied genetics
container_volume 131
creator Koller, Teresa
Brunner, Susanne
Herren, Gerhard
Hurni, Severine
Keller, Beat
description Key message The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew ( Blumeria graminis f. sp. tritici , Bgt ) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.
doi_str_mv 10.1007/s00122-017-3043-9
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5852180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A531094336</galeid><sourcerecordid>A531094336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-98f22cde62e0a21bb6745752318406c245ccc846efcab870d6ecc6683ffa2bc53</originalsourceid><addsrcrecordid>eNp1ks1u1DAUhSMEokPhAdigSGzoIuXajuNkg1RVFCpVouJnbTnOTcaVYw920mHeHocppYNAXljy_c6xztXJspcETgmAeBsBCKUFEFEwKFnRPMpWpGS0oLSkj7MVQAkFF5weZc9ivAEAyoE9zY5ow4AK0qyy9fUuqNF0xg257_MpKBcHdEbn1yPLlbVoMebG5ds1qikPGGc7_Xow4yb4W-zyjd92GHb5aGyH2wUxcVJO40JNa8x7g7Z7nj3plY344u4-zr5dvP96_rG4-vTh8vzsqtBckKlo6p5S3WFFERQlbVuJcknASF1CpWnJtdZ1WWGvVVsL6CrUuqpq1veKtpqz4-zd3ncztyN2Gl3KZOUmmFGFnfTKyMOJM2s5-FvJa05JDcngzZ1B8N9njJMcTdRorXLo5yhJUzeciRpEQl__hd74ObgUb6HKijRE8D_UoCxK43qf_tWLqTzjjEBTMlYl6vQfVDodjkZ7h71J7weCkwNBYib8MQ1qjlFefvl8yJI9q4OPMWB_vw8CcqmS3FdJpirJpUqySZpXDxd5r_jdnQTQPRDTyA0YHqT_r-tPtnLS-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984619175</pqid></control><display><type>article</type><title>Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Koller, Teresa ; Brunner, Susanne ; Herren, Gerhard ; Hurni, Severine ; Keller, Beat</creator><creatorcontrib>Koller, Teresa ; Brunner, Susanne ; Herren, Gerhard ; Hurni, Severine ; Keller, Beat</creatorcontrib><description>Key message The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew ( Blumeria graminis f. sp. tritici , Bgt ) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-017-3043-9</identifier><identifier>PMID: 29302719</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Airborne microorganisms ; Alleles ; Ascomycota ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cultivars ; Disease resistance (Plants) ; Disease Resistance - genetics ; Diseases and pests ; Genes ; Genetic aspects ; Genetic engineering ; Genetic transformation ; Health aspects ; Leucine ; Life Sciences ; Mildew ; Original ; Original Article ; Pathogens ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant Proteins - genetics ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - microbiology ; Powdery mildew ; Prevention ; Seed set ; Seedlings ; Transgenes ; Triticum ; Triticum - genetics ; Triticum - microbiology ; Wheat</subject><ispartof>Theoretical and applied genetics, 2018-04, Vol.131 (4), p.861-871</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-98f22cde62e0a21bb6745752318406c245ccc846efcab870d6ecc6683ffa2bc53</citedby><cites>FETCH-LOGICAL-c571t-98f22cde62e0a21bb6745752318406c245ccc846efcab870d6ecc6683ffa2bc53</cites><orcidid>0000-0003-2379-9225 ; 0000-0002-3443-8858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-017-3043-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-017-3043-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29302719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koller, Teresa</creatorcontrib><creatorcontrib>Brunner, Susanne</creatorcontrib><creatorcontrib>Herren, Gerhard</creatorcontrib><creatorcontrib>Hurni, Severine</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><title>Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew ( Blumeria graminis f. sp. tritici , Bgt ) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.</description><subject>Agriculture</subject><subject>Airborne microorganisms</subject><subject>Alleles</subject><subject>Ascomycota</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cultivars</subject><subject>Disease resistance (Plants)</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic transformation</subject><subject>Health aspects</subject><subject>Leucine</subject><subject>Life Sciences</subject><subject>Mildew</subject><subject>Original</subject><subject>Original Article</subject><subject>Pathogens</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Proteins - genetics</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>Powdery mildew</subject><subject>Prevention</subject><subject>Seed set</subject><subject>Seedlings</subject><subject>Transgenes</subject><subject>Triticum</subject><subject>Triticum - genetics</subject><subject>Triticum - microbiology</subject><subject>Wheat</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1ks1u1DAUhSMEokPhAdigSGzoIuXajuNkg1RVFCpVouJnbTnOTcaVYw920mHeHocppYNAXljy_c6xztXJspcETgmAeBsBCKUFEFEwKFnRPMpWpGS0oLSkj7MVQAkFF5weZc9ivAEAyoE9zY5ow4AK0qyy9fUuqNF0xg257_MpKBcHdEbn1yPLlbVoMebG5ds1qikPGGc7_Xow4yb4W-zyjd92GHb5aGyH2wUxcVJO40JNa8x7g7Z7nj3plY344u4-zr5dvP96_rG4-vTh8vzsqtBckKlo6p5S3WFFERQlbVuJcknASF1CpWnJtdZ1WWGvVVsL6CrUuqpq1veKtpqz4-zd3ncztyN2Gl3KZOUmmFGFnfTKyMOJM2s5-FvJa05JDcngzZ1B8N9njJMcTdRorXLo5yhJUzeciRpEQl__hd74ObgUb6HKijRE8D_UoCxK43qf_tWLqTzjjEBTMlYl6vQfVDodjkZ7h71J7weCkwNBYib8MQ1qjlFefvl8yJI9q4OPMWB_vw8CcqmS3FdJpirJpUqySZpXDxd5r_jdnQTQPRDTyA0YHqT_r-tPtnLS-Q</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Koller, Teresa</creator><creator>Brunner, Susanne</creator><creator>Herren, Gerhard</creator><creator>Hurni, Severine</creator><creator>Keller, Beat</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2379-9225</orcidid><orcidid>https://orcid.org/0000-0002-3443-8858</orcidid></search><sort><creationdate>20180401</creationdate><title>Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field</title><author>Koller, Teresa ; Brunner, Susanne ; Herren, Gerhard ; Hurni, Severine ; Keller, Beat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-98f22cde62e0a21bb6745752318406c245ccc846efcab870d6ecc6683ffa2bc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Airborne microorganisms</topic><topic>Alleles</topic><topic>Ascomycota</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cultivars</topic><topic>Disease resistance (Plants)</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic transformation</topic><topic>Health aspects</topic><topic>Leucine</topic><topic>Life Sciences</topic><topic>Mildew</topic><topic>Original</topic><topic>Original Article</topic><topic>Pathogens</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Proteins - genetics</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>Powdery mildew</topic><topic>Prevention</topic><topic>Seed set</topic><topic>Seedlings</topic><topic>Transgenes</topic><topic>Triticum</topic><topic>Triticum - genetics</topic><topic>Triticum - microbiology</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koller, Teresa</creatorcontrib><creatorcontrib>Brunner, Susanne</creatorcontrib><creatorcontrib>Herren, Gerhard</creatorcontrib><creatorcontrib>Hurni, Severine</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koller, Teresa</au><au>Brunner, Susanne</au><au>Herren, Gerhard</au><au>Hurni, Severine</au><au>Keller, Beat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>131</volume><issue>4</issue><spage>861</spage><epage>871</epage><pages>861-871</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew ( Blumeria graminis f. sp. tritici , Bgt ) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29302719</pmid><doi>10.1007/s00122-017-3043-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2379-9225</orcidid><orcidid>https://orcid.org/0000-0002-3443-8858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2018-04, Vol.131 (4), p.861-871
issn 0040-5752
1432-2242
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5852180
source MEDLINE; SpringerNature Journals
subjects Agriculture
Airborne microorganisms
Alleles
Ascomycota
Biochemistry
Biomedical and Life Sciences
Biotechnology
Cultivars
Disease resistance (Plants)
Disease Resistance - genetics
Diseases and pests
Genes
Genetic aspects
Genetic engineering
Genetic transformation
Health aspects
Leucine
Life Sciences
Mildew
Original
Original Article
Pathogens
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Diseases - genetics
Plant Diseases - microbiology
Plant Genetics and Genomics
Plant Proteins - genetics
Plants, Genetically Modified - genetics
Plants, Genetically Modified - microbiology
Powdery mildew
Prevention
Seed set
Seedlings
Transgenes
Triticum
Triticum - genetics
Triticum - microbiology
Wheat
title Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyramiding%20of%20transgenic%20Pm3%20alleles%20in%20wheat%20results%20in%20improved%20powdery%20mildew%20resistance%20in%20the%20field&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Koller,%20Teresa&rft.date=2018-04-01&rft.volume=131&rft.issue=4&rft.spage=861&rft.epage=871&rft.pages=861-871&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-017-3043-9&rft_dat=%3Cgale_pubme%3EA531094336%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984619175&rft_id=info:pmid/29302719&rft_galeid=A531094336&rfr_iscdi=true