Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field
Key message The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-s...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2018-04, Vol.131 (4), p.861-871 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 871 |
---|---|
container_issue | 4 |
container_start_page | 861 |
container_title | Theoretical and applied genetics |
container_volume | 131 |
creator | Koller, Teresa Brunner, Susanne Herren, Gerhard Hurni, Severine Keller, Beat |
description | Key message
The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects.
Allelic
Pm3
resistance genes of wheat confer race-specific resistance to powdery mildew (
Blumeria graminis
f. sp.
tritici
,
Bgt
) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles
Pm3a, b, c, d, f,
and
g
have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided
Pm3
alleles, which were generated by crossbreeding of lines transformed with single
Pm3
alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two
Pm3
alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of
Pm3
transgenes proved to be successful in enhancing powdery mildew field resistance. |
doi_str_mv | 10.1007/s00122-017-3043-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5852180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A531094336</galeid><sourcerecordid>A531094336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-98f22cde62e0a21bb6745752318406c245ccc846efcab870d6ecc6683ffa2bc53</originalsourceid><addsrcrecordid>eNp1ks1u1DAUhSMEokPhAdigSGzoIuXajuNkg1RVFCpVouJnbTnOTcaVYw920mHeHocppYNAXljy_c6xztXJspcETgmAeBsBCKUFEFEwKFnRPMpWpGS0oLSkj7MVQAkFF5weZc9ivAEAyoE9zY5ow4AK0qyy9fUuqNF0xg257_MpKBcHdEbn1yPLlbVoMebG5ds1qikPGGc7_Xow4yb4W-zyjd92GHb5aGyH2wUxcVJO40JNa8x7g7Z7nj3plY344u4-zr5dvP96_rG4-vTh8vzsqtBckKlo6p5S3WFFERQlbVuJcknASF1CpWnJtdZ1WWGvVVsL6CrUuqpq1veKtpqz4-zd3ncztyN2Gl3KZOUmmFGFnfTKyMOJM2s5-FvJa05JDcngzZ1B8N9njJMcTdRorXLo5yhJUzeciRpEQl__hd74ObgUb6HKijRE8D_UoCxK43qf_tWLqTzjjEBTMlYl6vQfVDodjkZ7h71J7weCkwNBYib8MQ1qjlFefvl8yJI9q4OPMWB_vw8CcqmS3FdJpirJpUqySZpXDxd5r_jdnQTQPRDTyA0YHqT_r-tPtnLS-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984619175</pqid></control><display><type>article</type><title>Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Koller, Teresa ; Brunner, Susanne ; Herren, Gerhard ; Hurni, Severine ; Keller, Beat</creator><creatorcontrib>Koller, Teresa ; Brunner, Susanne ; Herren, Gerhard ; Hurni, Severine ; Keller, Beat</creatorcontrib><description>Key message
The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects.
Allelic
Pm3
resistance genes of wheat confer race-specific resistance to powdery mildew (
Blumeria graminis
f. sp.
tritici
,
Bgt
) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles
Pm3a, b, c, d, f,
and
g
have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided
Pm3
alleles, which were generated by crossbreeding of lines transformed with single
Pm3
alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two
Pm3
alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of
Pm3
transgenes proved to be successful in enhancing powdery mildew field resistance.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-017-3043-9</identifier><identifier>PMID: 29302719</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Airborne microorganisms ; Alleles ; Ascomycota ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cultivars ; Disease resistance (Plants) ; Disease Resistance - genetics ; Diseases and pests ; Genes ; Genetic aspects ; Genetic engineering ; Genetic transformation ; Health aspects ; Leucine ; Life Sciences ; Mildew ; Original ; Original Article ; Pathogens ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant Proteins - genetics ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - microbiology ; Powdery mildew ; Prevention ; Seed set ; Seedlings ; Transgenes ; Triticum ; Triticum - genetics ; Triticum - microbiology ; Wheat</subject><ispartof>Theoretical and applied genetics, 2018-04, Vol.131 (4), p.861-871</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-98f22cde62e0a21bb6745752318406c245ccc846efcab870d6ecc6683ffa2bc53</citedby><cites>FETCH-LOGICAL-c571t-98f22cde62e0a21bb6745752318406c245ccc846efcab870d6ecc6683ffa2bc53</cites><orcidid>0000-0003-2379-9225 ; 0000-0002-3443-8858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-017-3043-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-017-3043-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29302719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koller, Teresa</creatorcontrib><creatorcontrib>Brunner, Susanne</creatorcontrib><creatorcontrib>Herren, Gerhard</creatorcontrib><creatorcontrib>Hurni, Severine</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><title>Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects.
Allelic
Pm3
resistance genes of wheat confer race-specific resistance to powdery mildew (
Blumeria graminis
f. sp.
tritici
,
Bgt
) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles
Pm3a, b, c, d, f,
and
g
have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided
Pm3
alleles, which were generated by crossbreeding of lines transformed with single
Pm3
alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two
Pm3
alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of
Pm3
transgenes proved to be successful in enhancing powdery mildew field resistance.</description><subject>Agriculture</subject><subject>Airborne microorganisms</subject><subject>Alleles</subject><subject>Ascomycota</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cultivars</subject><subject>Disease resistance (Plants)</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic transformation</subject><subject>Health aspects</subject><subject>Leucine</subject><subject>Life Sciences</subject><subject>Mildew</subject><subject>Original</subject><subject>Original Article</subject><subject>Pathogens</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Proteins - genetics</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>Powdery mildew</subject><subject>Prevention</subject><subject>Seed set</subject><subject>Seedlings</subject><subject>Transgenes</subject><subject>Triticum</subject><subject>Triticum - genetics</subject><subject>Triticum - microbiology</subject><subject>Wheat</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1ks1u1DAUhSMEokPhAdigSGzoIuXajuNkg1RVFCpVouJnbTnOTcaVYw920mHeHocppYNAXljy_c6xztXJspcETgmAeBsBCKUFEFEwKFnRPMpWpGS0oLSkj7MVQAkFF5weZc9ivAEAyoE9zY5ow4AK0qyy9fUuqNF0xg257_MpKBcHdEbn1yPLlbVoMebG5ds1qikPGGc7_Xow4yb4W-zyjd92GHb5aGyH2wUxcVJO40JNa8x7g7Z7nj3plY344u4-zr5dvP96_rG4-vTh8vzsqtBckKlo6p5S3WFFERQlbVuJcknASF1CpWnJtdZ1WWGvVVsL6CrUuqpq1veKtpqz4-zd3ncztyN2Gl3KZOUmmFGFnfTKyMOJM2s5-FvJa05JDcngzZ1B8N9njJMcTdRorXLo5yhJUzeciRpEQl__hd74ObgUb6HKijRE8D_UoCxK43qf_tWLqTzjjEBTMlYl6vQfVDodjkZ7h71J7weCkwNBYib8MQ1qjlFefvl8yJI9q4OPMWB_vw8CcqmS3FdJpirJpUqySZpXDxd5r_jdnQTQPRDTyA0YHqT_r-tPtnLS-Q</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Koller, Teresa</creator><creator>Brunner, Susanne</creator><creator>Herren, Gerhard</creator><creator>Hurni, Severine</creator><creator>Keller, Beat</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2379-9225</orcidid><orcidid>https://orcid.org/0000-0002-3443-8858</orcidid></search><sort><creationdate>20180401</creationdate><title>Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field</title><author>Koller, Teresa ; Brunner, Susanne ; Herren, Gerhard ; Hurni, Severine ; Keller, Beat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-98f22cde62e0a21bb6745752318406c245ccc846efcab870d6ecc6683ffa2bc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Airborne microorganisms</topic><topic>Alleles</topic><topic>Ascomycota</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cultivars</topic><topic>Disease resistance (Plants)</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic transformation</topic><topic>Health aspects</topic><topic>Leucine</topic><topic>Life Sciences</topic><topic>Mildew</topic><topic>Original</topic><topic>Original Article</topic><topic>Pathogens</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Proteins - genetics</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>Powdery mildew</topic><topic>Prevention</topic><topic>Seed set</topic><topic>Seedlings</topic><topic>Transgenes</topic><topic>Triticum</topic><topic>Triticum - genetics</topic><topic>Triticum - microbiology</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koller, Teresa</creatorcontrib><creatorcontrib>Brunner, Susanne</creatorcontrib><creatorcontrib>Herren, Gerhard</creatorcontrib><creatorcontrib>Hurni, Severine</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koller, Teresa</au><au>Brunner, Susanne</au><au>Herren, Gerhard</au><au>Hurni, Severine</au><au>Keller, Beat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>131</volume><issue>4</issue><spage>861</spage><epage>871</epage><pages>861-871</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects.
Allelic
Pm3
resistance genes of wheat confer race-specific resistance to powdery mildew (
Blumeria graminis
f. sp.
tritici
,
Bgt
) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles
Pm3a, b, c, d, f,
and
g
have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided
Pm3
alleles, which were generated by crossbreeding of lines transformed with single
Pm3
alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two
Pm3
alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of
Pm3
transgenes proved to be successful in enhancing powdery mildew field resistance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29302719</pmid><doi>10.1007/s00122-017-3043-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2379-9225</orcidid><orcidid>https://orcid.org/0000-0002-3443-8858</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2018-04, Vol.131 (4), p.861-871 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5852180 |
source | MEDLINE; SpringerNature Journals |
subjects | Agriculture Airborne microorganisms Alleles Ascomycota Biochemistry Biomedical and Life Sciences Biotechnology Cultivars Disease resistance (Plants) Disease Resistance - genetics Diseases and pests Genes Genetic aspects Genetic engineering Genetic transformation Health aspects Leucine Life Sciences Mildew Original Original Article Pathogens Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Diseases - genetics Plant Diseases - microbiology Plant Genetics and Genomics Plant Proteins - genetics Plants, Genetically Modified - genetics Plants, Genetically Modified - microbiology Powdery mildew Prevention Seed set Seedlings Transgenes Triticum Triticum - genetics Triticum - microbiology Wheat |
title | Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyramiding%20of%20transgenic%20Pm3%20alleles%20in%20wheat%20results%20in%20improved%20powdery%20mildew%20resistance%20in%20the%20field&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Koller,%20Teresa&rft.date=2018-04-01&rft.volume=131&rft.issue=4&rft.spage=861&rft.epage=871&rft.pages=861-871&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-017-3043-9&rft_dat=%3Cgale_pubme%3EA531094336%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984619175&rft_id=info:pmid/29302719&rft_galeid=A531094336&rfr_iscdi=true |