In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements

DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular vision 2018-03, Vol.24, p.218-230
Hauptverfasser: Hossain, Reafa A, Dunham, Nicholas R, Enke, Raymond A, Berndsen, Christopher E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue
container_start_page 218
container_title Molecular vision
container_volume 24
creator Hossain, Reafa A
Dunham, Nicholas R
Enke, Raymond A
Berndsen, Christopher E
description DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of , , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human and genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5851326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017054745</sourcerecordid><originalsourceid>FETCH-LOGICAL-p294t-7e1da7f721f8d810bd6f1db031ad74e991be7ada396fd94ad076f8e0c8baa88b3</originalsourceid><addsrcrecordid>eNpdUE1LxDAULKK46-pfkIAXL4WkaZv0Isjix8KCFz14Cmny2mZJk9q0wv57A66yepr3eMO8mTlJlgRXOMUFLU6P5kVyEcIO44wUOTtPFllVlJSVbJm8bxwKxhrlUe81WONa5BsEg2nBwWRUapyeFWikOulaCMg4NHR-8iMoGCIgZUI6QjtbGbc9Ags9uClcJmeNtAGuDrhK3h4fXtfP6fblabO-36ZDVuVTyoBoyRqWkYZrTnCty4boGlMiNcuhqkgNTGpJq7LRVS41ZmXDASteS8l5TVfJ3bfuMNc9aBV_j9KKYTS9HPfCSyP-XpzpROs_RcELQrMyCtweBEb_MUOYRG-CAmulAz8HkWHCcOwtLyL15h915-fRxXgiI5SXmBFKI-v62NGvlZ_W6Rf1kIHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138607133</pqid></control><display><type>article</type><title>In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hossain, Reafa A ; Dunham, Nicholas R ; Enke, Raymond A ; Berndsen, Christopher E</creator><creatorcontrib>Hossain, Reafa A ; Dunham, Nicholas R ; Enke, Raymond A ; Berndsen, Christopher E</creatorcontrib><description>DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of , , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human and genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.</description><identifier>ISSN: 1090-0535</identifier><identifier>EISSN: 1090-0535</identifier><identifier>PMID: 29563767</identifier><language>eng</language><publisher>United States: Molecular Vision</publisher><subject>Acute-Phase Proteins - chemistry ; Acute-Phase Proteins - genetics ; Acute-Phase Proteins - metabolism ; Base Sequence ; Binding sites ; Bisulfite ; Cadaver ; CRX protein ; Cyclic Nucleotide Phosphodiesterases, Type 6 - genetics ; Cyclic Nucleotide Phosphodiesterases, Type 6 - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Methylation ; DNA-directed RNA polymerase ; Epigenesis, Genetic ; Epigenetics ; Gene expression ; Gene silencing ; Homeobox ; Homeodomain Proteins - chemistry ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Long Interspersed Nucleotide Elements ; Models, Molecular ; Molecular modelling ; Nucleotide sequence ; Pax6 protein ; PAX6 Transcription Factor - genetics ; PAX6 Transcription Factor - metabolism ; Phosphodiesterase ; Photoreceptor Cells, Vertebrate - cytology ; Photoreceptor Cells, Vertebrate - metabolism ; Photoreceptors ; Promoter Regions, Genetic ; Protein Binding ; Regulatory sequences ; Retina ; RNA polymerase ; Sequence Alignment ; Sequence Homology, Nucleic Acid ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription, Genetic</subject><ispartof>Molecular vision, 2018-03, Vol.24, p.218-230</ispartof><rights>Copyright Molecular Vision 2018</rights><rights>Copyright © 2018 Molecular Vision. 2018 Molecular Vision</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851326/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851326/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29563767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hossain, Reafa A</creatorcontrib><creatorcontrib>Dunham, Nicholas R</creatorcontrib><creatorcontrib>Enke, Raymond A</creatorcontrib><creatorcontrib>Berndsen, Christopher E</creatorcontrib><title>In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements</title><title>Molecular vision</title><addtitle>Mol Vis</addtitle><description>DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of , , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human and genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.</description><subject>Acute-Phase Proteins - chemistry</subject><subject>Acute-Phase Proteins - genetics</subject><subject>Acute-Phase Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Bisulfite</subject><subject>Cadaver</subject><subject>CRX protein</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 6 - genetics</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 6 - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>DNA-directed RNA polymerase</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Homeobox</subject><subject>Homeodomain Proteins - chemistry</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Long Interspersed Nucleotide Elements</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>Nucleotide sequence</subject><subject>Pax6 protein</subject><subject>PAX6 Transcription Factor - genetics</subject><subject>PAX6 Transcription Factor - metabolism</subject><subject>Phosphodiesterase</subject><subject>Photoreceptor Cells, Vertebrate - cytology</subject><subject>Photoreceptor Cells, Vertebrate - metabolism</subject><subject>Photoreceptors</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Regulatory sequences</subject><subject>Retina</subject><subject>RNA polymerase</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription, Genetic</subject><issn>1090-0535</issn><issn>1090-0535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUE1LxDAULKK46-pfkIAXL4WkaZv0Isjix8KCFz14Cmny2mZJk9q0wv57A66yepr3eMO8mTlJlgRXOMUFLU6P5kVyEcIO44wUOTtPFllVlJSVbJm8bxwKxhrlUe81WONa5BsEg2nBwWRUapyeFWikOulaCMg4NHR-8iMoGCIgZUI6QjtbGbc9Ags9uClcJmeNtAGuDrhK3h4fXtfP6fblabO-36ZDVuVTyoBoyRqWkYZrTnCty4boGlMiNcuhqkgNTGpJq7LRVS41ZmXDASteS8l5TVfJ3bfuMNc9aBV_j9KKYTS9HPfCSyP-XpzpROs_RcELQrMyCtweBEb_MUOYRG-CAmulAz8HkWHCcOwtLyL15h915-fRxXgiI5SXmBFKI-v62NGvlZ_W6Rf1kIHw</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Hossain, Reafa A</creator><creator>Dunham, Nicholas R</creator><creator>Enke, Raymond A</creator><creator>Berndsen, Christopher E</creator><general>Molecular Vision</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180314</creationdate><title>In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements</title><author>Hossain, Reafa A ; Dunham, Nicholas R ; Enke, Raymond A ; Berndsen, Christopher E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p294t-7e1da7f721f8d810bd6f1db031ad74e991be7ada396fd94ad076f8e0c8baa88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acute-Phase Proteins - chemistry</topic><topic>Acute-Phase Proteins - genetics</topic><topic>Acute-Phase Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Bisulfite</topic><topic>Cadaver</topic><topic>CRX protein</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 6 - genetics</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 6 - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>DNA-directed RNA polymerase</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Homeobox</topic><topic>Homeodomain Proteins - chemistry</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Long Interspersed Nucleotide Elements</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>Nucleotide sequence</topic><topic>Pax6 protein</topic><topic>PAX6 Transcription Factor - genetics</topic><topic>PAX6 Transcription Factor - metabolism</topic><topic>Phosphodiesterase</topic><topic>Photoreceptor Cells, Vertebrate - cytology</topic><topic>Photoreceptor Cells, Vertebrate - metabolism</topic><topic>Photoreceptors</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Regulatory sequences</topic><topic>Retina</topic><topic>RNA polymerase</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Reafa A</creatorcontrib><creatorcontrib>Dunham, Nicholas R</creatorcontrib><creatorcontrib>Enke, Raymond A</creatorcontrib><creatorcontrib>Berndsen, Christopher E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Reafa A</au><au>Dunham, Nicholas R</au><au>Enke, Raymond A</au><au>Berndsen, Christopher E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements</atitle><jtitle>Molecular vision</jtitle><addtitle>Mol Vis</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>24</volume><spage>218</spage><epage>230</epage><pages>218-230</pages><issn>1090-0535</issn><eissn>1090-0535</eissn><abstract>DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of , , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human and genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.</abstract><cop>United States</cop><pub>Molecular Vision</pub><pmid>29563767</pmid><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1090-0535
ispartof Molecular vision, 2018-03, Vol.24, p.218-230
issn 1090-0535
1090-0535
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5851326
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acute-Phase Proteins - chemistry
Acute-Phase Proteins - genetics
Acute-Phase Proteins - metabolism
Base Sequence
Binding sites
Bisulfite
Cadaver
CRX protein
Cyclic Nucleotide Phosphodiesterases, Type 6 - genetics
Cyclic Nucleotide Phosphodiesterases, Type 6 - metabolism
Deoxyribonucleic acid
DNA
DNA Methylation
DNA-directed RNA polymerase
Epigenesis, Genetic
Epigenetics
Gene expression
Gene silencing
Homeobox
Homeodomain Proteins - chemistry
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Humans
Long Interspersed Nucleotide Elements
Models, Molecular
Molecular modelling
Nucleotide sequence
Pax6 protein
PAX6 Transcription Factor - genetics
PAX6 Transcription Factor - metabolism
Phosphodiesterase
Photoreceptor Cells, Vertebrate - cytology
Photoreceptor Cells, Vertebrate - metabolism
Photoreceptors
Promoter Regions, Genetic
Protein Binding
Regulatory sequences
Retina
RNA polymerase
Sequence Alignment
Sequence Homology, Nucleic Acid
Trans-Activators - chemistry
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription, Genetic
title In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20modeling%20of%20epigenetic-induced%20changes%20in%20photoreceptor%20cis-regulatory%20elements&rft.jtitle=Molecular%20vision&rft.au=Hossain,%20Reafa%20A&rft.date=2018-03-14&rft.volume=24&rft.spage=218&rft.epage=230&rft.pages=218-230&rft.issn=1090-0535&rft.eissn=1090-0535&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2017054745%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138607133&rft_id=info:pmid/29563767&rfr_iscdi=true