Machine Learning Methods to Predict Diabetes Complications

One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of diabetes science and technology 2018-03, Vol.12 (2), p.295-302
Hauptverfasser: Dagliati, Arianna, Marini, Simone, Sacchi, Lucia, Cogni, Giulia, Teliti, Marsida, Tibollo, Valentina, De Cata, Pasquale, Chiovato, Luca, Bellazzi, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue 2
container_start_page 295
container_title Journal of diabetes science and technology
container_volume 12
creator Dagliati, Arianna
Marini, Simone
Sacchi, Lucia
Cogni, Giulia
Teliti, Marsida
Tibollo, Valentina
De Cata, Pasquale
Chiovato, Luca
Bellazzi, Riccardo
description One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical practice.
doi_str_mv 10.1177/1932296817706375
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5851210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1932296817706375</sage_id><sourcerecordid>1899117730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4155-d567a5bb9222e15e37f837b9a60df5a82b436392410dce00a47e00ebb49985833</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEYjC4c0I9cinko2kSDkhofEqb4ADnKG3dLVPbjKRF4t_TamMaSFxsy3782noROiP4khAhrohilKpU9jVOmeB76GhoxUNvf6ceoeMQlhjzRApxiEZUJipJiTxC1zOTL2wD0RSMb2wzj2bQLlwRotZFrx4Km7fRnTUZtBCiiatXlc1Na10TTtBBaaoAp5s8Ru8P92-Tp3j68vg8uZ3GeUI4jwueCsOzTFFKgXBgopRMZMqkuCi5kTRLWMoUTQgucsDYJKKPkGWJUpJLxsboZq276rIaeqZpvan0ytva-C_tjNW_J41d6Ln71FxyQgnuBS42At59dBBaXduQQ1WZBlwXNJFKDXayAcVrNPcuBA_l9gzBemD0X8v7lfPd97YLPx73QLwGgpmDXrrON71d_wt-A5BViFE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899117730</pqid></control><display><type>article</type><title>Machine Learning Methods to Predict Diabetes Complications</title><source>SAGE Publications</source><source>PubMed Central (PMC)</source><source>EZB Electronic Journals Library</source><creator>Dagliati, Arianna ; Marini, Simone ; Sacchi, Lucia ; Cogni, Giulia ; Teliti, Marsida ; Tibollo, Valentina ; De Cata, Pasquale ; Chiovato, Luca ; Bellazzi, Riccardo</creator><creatorcontrib>Dagliati, Arianna ; Marini, Simone ; Sacchi, Lucia ; Cogni, Giulia ; Teliti, Marsida ; Tibollo, Valentina ; De Cata, Pasquale ; Chiovato, Luca ; Bellazzi, Riccardo</creatorcontrib><description>One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical practice.</description><identifier>ISSN: 1932-2968</identifier><identifier>EISSN: 1932-2968</identifier><identifier>EISSN: 1932-3107</identifier><identifier>DOI: 10.1177/1932296817706375</identifier><identifier>PMID: 28494618</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Special Section: AI and Diabetes</subject><ispartof>Journal of diabetes science and technology, 2018-03, Vol.12 (2), p.295-302</ispartof><rights>2017 Diabetes Technology Society</rights><rights>2017 Diabetes Technology Society 2017 Diabetes Technology Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4155-d567a5bb9222e15e37f837b9a60df5a82b436392410dce00a47e00ebb49985833</citedby><cites>FETCH-LOGICAL-c4155-d567a5bb9222e15e37f837b9a60df5a82b436392410dce00a47e00ebb49985833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851210/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851210/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,21817,27922,27923,43619,43620,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28494618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dagliati, Arianna</creatorcontrib><creatorcontrib>Marini, Simone</creatorcontrib><creatorcontrib>Sacchi, Lucia</creatorcontrib><creatorcontrib>Cogni, Giulia</creatorcontrib><creatorcontrib>Teliti, Marsida</creatorcontrib><creatorcontrib>Tibollo, Valentina</creatorcontrib><creatorcontrib>De Cata, Pasquale</creatorcontrib><creatorcontrib>Chiovato, Luca</creatorcontrib><creatorcontrib>Bellazzi, Riccardo</creatorcontrib><title>Machine Learning Methods to Predict Diabetes Complications</title><title>Journal of diabetes science and technology</title><addtitle>J Diabetes Sci Technol</addtitle><description>One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical practice.</description><subject>Special Section: AI and Diabetes</subject><issn>1932-2968</issn><issn>1932-2968</issn><issn>1932-3107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEYjC4c0I9cinko2kSDkhofEqb4ADnKG3dLVPbjKRF4t_TamMaSFxsy3782noROiP4khAhrohilKpU9jVOmeB76GhoxUNvf6ceoeMQlhjzRApxiEZUJipJiTxC1zOTL2wD0RSMb2wzj2bQLlwRotZFrx4Km7fRnTUZtBCiiatXlc1Na10TTtBBaaoAp5s8Ru8P92-Tp3j68vg8uZ3GeUI4jwueCsOzTFFKgXBgopRMZMqkuCi5kTRLWMoUTQgucsDYJKKPkGWJUpJLxsboZq276rIaeqZpvan0ytva-C_tjNW_J41d6Ln71FxyQgnuBS42At59dBBaXduQQ1WZBlwXNJFKDXayAcVrNPcuBA_l9gzBemD0X8v7lfPd97YLPx73QLwGgpmDXrrON71d_wt-A5BViFE</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Dagliati, Arianna</creator><creator>Marini, Simone</creator><creator>Sacchi, Lucia</creator><creator>Cogni, Giulia</creator><creator>Teliti, Marsida</creator><creator>Tibollo, Valentina</creator><creator>De Cata, Pasquale</creator><creator>Chiovato, Luca</creator><creator>Bellazzi, Riccardo</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180301</creationdate><title>Machine Learning Methods to Predict Diabetes Complications</title><author>Dagliati, Arianna ; Marini, Simone ; Sacchi, Lucia ; Cogni, Giulia ; Teliti, Marsida ; Tibollo, Valentina ; De Cata, Pasquale ; Chiovato, Luca ; Bellazzi, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4155-d567a5bb9222e15e37f837b9a60df5a82b436392410dce00a47e00ebb49985833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Special Section: AI and Diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagliati, Arianna</creatorcontrib><creatorcontrib>Marini, Simone</creatorcontrib><creatorcontrib>Sacchi, Lucia</creatorcontrib><creatorcontrib>Cogni, Giulia</creatorcontrib><creatorcontrib>Teliti, Marsida</creatorcontrib><creatorcontrib>Tibollo, Valentina</creatorcontrib><creatorcontrib>De Cata, Pasquale</creatorcontrib><creatorcontrib>Chiovato, Luca</creatorcontrib><creatorcontrib>Bellazzi, Riccardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of diabetes science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagliati, Arianna</au><au>Marini, Simone</au><au>Sacchi, Lucia</au><au>Cogni, Giulia</au><au>Teliti, Marsida</au><au>Tibollo, Valentina</au><au>De Cata, Pasquale</au><au>Chiovato, Luca</au><au>Bellazzi, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Methods to Predict Diabetes Complications</atitle><jtitle>Journal of diabetes science and technology</jtitle><addtitle>J Diabetes Sci Technol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>295</spage><epage>302</epage><pages>295-302</pages><issn>1932-2968</issn><eissn>1932-2968</eissn><eissn>1932-3107</eissn><abstract>One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical practice.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>28494618</pmid><doi>10.1177/1932296817706375</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-2968
ispartof Journal of diabetes science and technology, 2018-03, Vol.12 (2), p.295-302
issn 1932-2968
1932-2968
1932-3107
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5851210
source SAGE Publications; PubMed Central (PMC); EZB Electronic Journals Library
subjects Special Section: AI and Diabetes
title Machine Learning Methods to Predict Diabetes Complications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Methods%20to%20Predict%20Diabetes%20Complications&rft.jtitle=Journal%20of%20diabetes%20science%20and%20technology&rft.au=Dagliati,%20Arianna&rft.date=2018-03-01&rft.volume=12&rft.issue=2&rft.spage=295&rft.epage=302&rft.pages=295-302&rft.issn=1932-2968&rft.eissn=1932-2968&rft_id=info:doi/10.1177/1932296817706375&rft_dat=%3Cproquest_pubme%3E1899117730%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899117730&rft_id=info:pmid/28494618&rft_sage_id=10.1177_1932296817706375&rfr_iscdi=true