A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites
A pathway for the production of aromatic amino acid metabolites in Clostridium sporogenes is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity. Gut bacterial pharmacy The human microbiome has a substantial effect on o...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2017-11, Vol.551 (7682), p.648-652 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 652 |
---|---|
container_issue | 7682 |
container_start_page | 648 |
container_title | Nature (London) |
container_volume | 551 |
creator | Dodd, Dylan Spitzer, Matthew H. Van Treuren, William Merrill, Bryan D. Hryckowian, Andrew J. Higginbottom, Steven K. Le, Anthony Cowan, Tina M. Nolan, Garry P. Fischbach, Michael A. Sonnenburg, Justin L. |
description | A pathway for the production of aromatic amino acid metabolites in
Clostridium sporogenes
is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity.
Gut bacterial pharmacy
The human microbiome has a substantial effect on our health. Our gut microbes produce a range of small molecules, many of which can reach relevant concentrations, yet we know surprisingly little about microbial metabolic pathways and how they affect the host. Here, Justin Sonnenburg, Michael Fischbach and colleagues use genetics and metabolic profiling to identify the gene cluster of
Clostridium sporogenes
that metabolizes aromatic amino acids, several of the products of which are produced exclusively by the microbiota. For example, the neuroprotective agent indolepropionic acid (IPA) was also produced by several other gut bacteria. In mice with controlled bacterial colonies, the serum levels of IPA and host physiology can be modulated by genetic modification of
C. sporogenes
.
The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream
1
,
2
, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont
Clostridium sporogenes
that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating
C. sporogenes
, we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community. |
doi_str_mv | 10.1038/nature24661 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A516460259</galeid><sourcerecordid>A516460259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c648t-d8b7a463f0fa4d647d10f4a7174a0758c99b949ce259ad32a6d35be0d8c8f1db3</originalsourceid><addsrcrecordid>eNp10t1r1TAYB-AiijubXnkvxd0o2pm0aZreCIeDH4OhoBPBm_A2fdtltMlZkk7nX28Om8dzpJKLQPLkl683SZ5QckJJIV4bCJPDnHFO7yULyiqeMS6q-8mCkFxkRBT8IDn0_pIQUtKKPUwO8ppyUZJ8kXxfpv0U0gZUQKdhSNcQLn7ATTpigMYO-hf6FJwdIWiVwqiNTUHp1qfaBJsabTBV2qlpiMD022UB_aPkQQeDx8d3_VHy9d3b89WH7OzT-9PV8ixTnImQtaKpgPGiIx2wlrOqpaRjUMWTAqlKoeq6qVmtMC9raIsceFuUDZJWKNHRtimOkje3ueupGbFVaIKDQa6dHsHdSAta7s8YfSF7ey3L-AQxOQY8vwtw9mpCH-SovcJhAIN28pLWvBKc5JxEevwPvbSTM_F6UVWk5jkl5V_Vw4BSm87GfdUmVC5LylnMKjfbZjOqR4PxkNZgp-Pwnn8249VaX8lddDKDYmtx1Go29cXegmgC_gw9TN7L0y-f9-3L_9vl-bfVx1mtnPXeYbf9EkrkpnLlTuVG_XT3F7f2T6lG8OoW-DhlenQ7Tz-T9xs2jPZG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970962105</pqid></control><display><type>article</type><title>A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Dodd, Dylan ; Spitzer, Matthew H. ; Van Treuren, William ; Merrill, Bryan D. ; Hryckowian, Andrew J. ; Higginbottom, Steven K. ; Le, Anthony ; Cowan, Tina M. ; Nolan, Garry P. ; Fischbach, Michael A. ; Sonnenburg, Justin L.</creator><creatorcontrib>Dodd, Dylan ; Spitzer, Matthew H. ; Van Treuren, William ; Merrill, Bryan D. ; Hryckowian, Andrew J. ; Higginbottom, Steven K. ; Le, Anthony ; Cowan, Tina M. ; Nolan, Garry P. ; Fischbach, Michael A. ; Sonnenburg, Justin L.</creatorcontrib><description>A pathway for the production of aromatic amino acid metabolites in
Clostridium sporogenes
is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity.
Gut bacterial pharmacy
The human microbiome has a substantial effect on our health. Our gut microbes produce a range of small molecules, many of which can reach relevant concentrations, yet we know surprisingly little about microbial metabolic pathways and how they affect the host. Here, Justin Sonnenburg, Michael Fischbach and colleagues use genetics and metabolic profiling to identify the gene cluster of
Clostridium sporogenes
that metabolizes aromatic amino acids, several of the products of which are produced exclusively by the microbiota. For example, the neuroprotective agent indolepropionic acid (IPA) was also produced by several other gut bacteria. In mice with controlled bacterial colonies, the serum levels of IPA and host physiology can be modulated by genetic modification of
C. sporogenes
.
The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream
1
,
2
, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont
Clostridium sporogenes
that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating
C. sporogenes
, we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature24661</identifier><identifier>PMID: 29168502</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 45 ; 45/41 ; 45/44 ; 631/326/2565/2134 ; 631/45/320 ; 64/60 ; 82/58 ; Amino acids ; Amino Acids, Aromatic - blood ; Amino Acids, Aromatic - metabolism ; Animals ; Bacteria ; Blood Chemical Analysis ; Closterium - genetics ; Closterium - metabolism ; Clostridium ; Digestive system ; Enzymes ; Gastrointestinal Microbiome - genetics ; Gastrointestinal Microbiome - physiology ; Gastrointestinal tract ; Genetic engineering ; Genetics ; Germ-Free Life ; Gnotobiotic ; Humanities and Social Sciences ; Humans ; Immunity ; Indoles - blood ; Indoles - metabolism ; Intestinal microflora ; Intestinal Mucosa - metabolism ; Intestine ; letter ; Male ; Metabolic Networks and Pathways - genetics ; Metabolic pathways ; Metabolism ; Metabolites ; Metabolome - physiology ; Metabolomics ; Mice ; Microbiota ; Microbiota (Symbiotic organisms) ; Microorganisms ; multidisciplinary ; Multigene Family - genetics ; Mutagenesis ; Permeability ; Phenylalanine ; Phenylalanine - metabolism ; Physiological aspects ; Reductases ; Science ; Serum - chemistry ; Serum - metabolism ; Serum levels ; Substrates ; Tryptophan ; Tryptophan - metabolism ; Tyrosine ; Tyrosine - metabolism</subject><ispartof>Nature (London), 2017-11, Vol.551 (7682), p.648-652</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 30, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c648t-d8b7a463f0fa4d647d10f4a7174a0758c99b949ce259ad32a6d35be0d8c8f1db3</citedby><cites>FETCH-LOGICAL-c648t-d8b7a463f0fa4d647d10f4a7174a0758c99b949ce259ad32a6d35be0d8c8f1db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature24661$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature24661$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29168502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dodd, Dylan</creatorcontrib><creatorcontrib>Spitzer, Matthew H.</creatorcontrib><creatorcontrib>Van Treuren, William</creatorcontrib><creatorcontrib>Merrill, Bryan D.</creatorcontrib><creatorcontrib>Hryckowian, Andrew J.</creatorcontrib><creatorcontrib>Higginbottom, Steven K.</creatorcontrib><creatorcontrib>Le, Anthony</creatorcontrib><creatorcontrib>Cowan, Tina M.</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Fischbach, Michael A.</creatorcontrib><creatorcontrib>Sonnenburg, Justin L.</creatorcontrib><title>A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A pathway for the production of aromatic amino acid metabolites in
Clostridium sporogenes
is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity.
Gut bacterial pharmacy
The human microbiome has a substantial effect on our health. Our gut microbes produce a range of small molecules, many of which can reach relevant concentrations, yet we know surprisingly little about microbial metabolic pathways and how they affect the host. Here, Justin Sonnenburg, Michael Fischbach and colleagues use genetics and metabolic profiling to identify the gene cluster of
Clostridium sporogenes
that metabolizes aromatic amino acids, several of the products of which are produced exclusively by the microbiota. For example, the neuroprotective agent indolepropionic acid (IPA) was also produced by several other gut bacteria. In mice with controlled bacterial colonies, the serum levels of IPA and host physiology can be modulated by genetic modification of
C. sporogenes
.
The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream
1
,
2
, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont
Clostridium sporogenes
that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating
C. sporogenes
, we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.</description><subject>13/1</subject><subject>45</subject><subject>45/41</subject><subject>45/44</subject><subject>631/326/2565/2134</subject><subject>631/45/320</subject><subject>64/60</subject><subject>82/58</subject><subject>Amino acids</subject><subject>Amino Acids, Aromatic - blood</subject><subject>Amino Acids, Aromatic - metabolism</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Blood Chemical Analysis</subject><subject>Closterium - genetics</subject><subject>Closterium - metabolism</subject><subject>Clostridium</subject><subject>Digestive system</subject><subject>Enzymes</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gastrointestinal tract</subject><subject>Genetic engineering</subject><subject>Genetics</subject><subject>Germ-Free Life</subject><subject>Gnotobiotic</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunity</subject><subject>Indoles - blood</subject><subject>Indoles - metabolism</subject><subject>Intestinal microflora</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestine</subject><subject>letter</subject><subject>Male</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome - physiology</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>Multigene Family - genetics</subject><subject>Mutagenesis</subject><subject>Permeability</subject><subject>Phenylalanine</subject><subject>Phenylalanine - metabolism</subject><subject>Physiological aspects</subject><subject>Reductases</subject><subject>Science</subject><subject>Serum - chemistry</subject><subject>Serum - metabolism</subject><subject>Serum levels</subject><subject>Substrates</subject><subject>Tryptophan</subject><subject>Tryptophan - metabolism</subject><subject>Tyrosine</subject><subject>Tyrosine - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10t1r1TAYB-AiijubXnkvxd0o2pm0aZreCIeDH4OhoBPBm_A2fdtltMlZkk7nX28Om8dzpJKLQPLkl683SZ5QckJJIV4bCJPDnHFO7yULyiqeMS6q-8mCkFxkRBT8IDn0_pIQUtKKPUwO8ppyUZJ8kXxfpv0U0gZUQKdhSNcQLn7ATTpigMYO-hf6FJwdIWiVwqiNTUHp1qfaBJsabTBV2qlpiMD022UB_aPkQQeDx8d3_VHy9d3b89WH7OzT-9PV8ixTnImQtaKpgPGiIx2wlrOqpaRjUMWTAqlKoeq6qVmtMC9raIsceFuUDZJWKNHRtimOkje3ueupGbFVaIKDQa6dHsHdSAta7s8YfSF7ey3L-AQxOQY8vwtw9mpCH-SovcJhAIN28pLWvBKc5JxEevwPvbSTM_F6UVWk5jkl5V_Vw4BSm87GfdUmVC5LylnMKjfbZjOqR4PxkNZgp-Pwnn8249VaX8lddDKDYmtx1Go29cXegmgC_gw9TN7L0y-f9-3L_9vl-bfVx1mtnPXeYbf9EkrkpnLlTuVG_XT3F7f2T6lG8OoW-DhlenQ7Tz-T9xs2jPZG</recordid><startdate>20171130</startdate><enddate>20171130</enddate><creator>Dodd, Dylan</creator><creator>Spitzer, Matthew H.</creator><creator>Van Treuren, William</creator><creator>Merrill, Bryan D.</creator><creator>Hryckowian, Andrew J.</creator><creator>Higginbottom, Steven K.</creator><creator>Le, Anthony</creator><creator>Cowan, Tina M.</creator><creator>Nolan, Garry P.</creator><creator>Fischbach, Michael A.</creator><creator>Sonnenburg, Justin L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171130</creationdate><title>A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites</title><author>Dodd, Dylan ; Spitzer, Matthew H. ; Van Treuren, William ; Merrill, Bryan D. ; Hryckowian, Andrew J. ; Higginbottom, Steven K. ; Le, Anthony ; Cowan, Tina M. ; Nolan, Garry P. ; Fischbach, Michael A. ; Sonnenburg, Justin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c648t-d8b7a463f0fa4d647d10f4a7174a0758c99b949ce259ad32a6d35be0d8c8f1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/1</topic><topic>45</topic><topic>45/41</topic><topic>45/44</topic><topic>631/326/2565/2134</topic><topic>631/45/320</topic><topic>64/60</topic><topic>82/58</topic><topic>Amino acids</topic><topic>Amino Acids, Aromatic - blood</topic><topic>Amino Acids, Aromatic - metabolism</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Blood Chemical Analysis</topic><topic>Closterium - genetics</topic><topic>Closterium - metabolism</topic><topic>Clostridium</topic><topic>Digestive system</topic><topic>Enzymes</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gastrointestinal tract</topic><topic>Genetic engineering</topic><topic>Genetics</topic><topic>Germ-Free Life</topic><topic>Gnotobiotic</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunity</topic><topic>Indoles - blood</topic><topic>Indoles - metabolism</topic><topic>Intestinal microflora</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestine</topic><topic>letter</topic><topic>Male</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome - physiology</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>Multigene Family - genetics</topic><topic>Mutagenesis</topic><topic>Permeability</topic><topic>Phenylalanine</topic><topic>Phenylalanine - metabolism</topic><topic>Physiological aspects</topic><topic>Reductases</topic><topic>Science</topic><topic>Serum - chemistry</topic><topic>Serum - metabolism</topic><topic>Serum levels</topic><topic>Substrates</topic><topic>Tryptophan</topic><topic>Tryptophan - metabolism</topic><topic>Tyrosine</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dodd, Dylan</creatorcontrib><creatorcontrib>Spitzer, Matthew H.</creatorcontrib><creatorcontrib>Van Treuren, William</creatorcontrib><creatorcontrib>Merrill, Bryan D.</creatorcontrib><creatorcontrib>Hryckowian, Andrew J.</creatorcontrib><creatorcontrib>Higginbottom, Steven K.</creatorcontrib><creatorcontrib>Le, Anthony</creatorcontrib><creatorcontrib>Cowan, Tina M.</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Fischbach, Michael A.</creatorcontrib><creatorcontrib>Sonnenburg, Justin L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dodd, Dylan</au><au>Spitzer, Matthew H.</au><au>Van Treuren, William</au><au>Merrill, Bryan D.</au><au>Hryckowian, Andrew J.</au><au>Higginbottom, Steven K.</au><au>Le, Anthony</au><au>Cowan, Tina M.</au><au>Nolan, Garry P.</au><au>Fischbach, Michael A.</au><au>Sonnenburg, Justin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-11-30</date><risdate>2017</risdate><volume>551</volume><issue>7682</issue><spage>648</spage><epage>652</epage><pages>648-652</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>A pathway for the production of aromatic amino acid metabolites in
Clostridium sporogenes
is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity.
Gut bacterial pharmacy
The human microbiome has a substantial effect on our health. Our gut microbes produce a range of small molecules, many of which can reach relevant concentrations, yet we know surprisingly little about microbial metabolic pathways and how they affect the host. Here, Justin Sonnenburg, Michael Fischbach and colleagues use genetics and metabolic profiling to identify the gene cluster of
Clostridium sporogenes
that metabolizes aromatic amino acids, several of the products of which are produced exclusively by the microbiota. For example, the neuroprotective agent indolepropionic acid (IPA) was also produced by several other gut bacteria. In mice with controlled bacterial colonies, the serum levels of IPA and host physiology can be modulated by genetic modification of
C. sporogenes
.
The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream
1
,
2
, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont
Clostridium sporogenes
that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating
C. sporogenes
, we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29168502</pmid><doi>10.1038/nature24661</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2017-11, Vol.551 (7682), p.648-652 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850949 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13/1 45 45/41 45/44 631/326/2565/2134 631/45/320 64/60 82/58 Amino acids Amino Acids, Aromatic - blood Amino Acids, Aromatic - metabolism Animals Bacteria Blood Chemical Analysis Closterium - genetics Closterium - metabolism Clostridium Digestive system Enzymes Gastrointestinal Microbiome - genetics Gastrointestinal Microbiome - physiology Gastrointestinal tract Genetic engineering Genetics Germ-Free Life Gnotobiotic Humanities and Social Sciences Humans Immunity Indoles - blood Indoles - metabolism Intestinal microflora Intestinal Mucosa - metabolism Intestine letter Male Metabolic Networks and Pathways - genetics Metabolic pathways Metabolism Metabolites Metabolome - physiology Metabolomics Mice Microbiota Microbiota (Symbiotic organisms) Microorganisms multidisciplinary Multigene Family - genetics Mutagenesis Permeability Phenylalanine Phenylalanine - metabolism Physiological aspects Reductases Science Serum - chemistry Serum - metabolism Serum levels Substrates Tryptophan Tryptophan - metabolism Tyrosine Tyrosine - metabolism |
title | A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gut%20bacterial%20pathway%20metabolizes%20aromatic%20amino%20acids%20into%20nine%20circulating%20metabolites&rft.jtitle=Nature%20(London)&rft.au=Dodd,%20Dylan&rft.date=2017-11-30&rft.volume=551&rft.issue=7682&rft.spage=648&rft.epage=652&rft.pages=648-652&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature24661&rft_dat=%3Cgale_pubme%3EA516460259%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970962105&rft_id=info:pmid/29168502&rft_galeid=A516460259&rfr_iscdi=true |