A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites

A pathway for the production of aromatic amino acid metabolites in Clostridium sporogenes is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity. Gut bacterial pharmacy The human microbiome has a substantial effect on o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2017-11, Vol.551 (7682), p.648-652
Hauptverfasser: Dodd, Dylan, Spitzer, Matthew H., Van Treuren, William, Merrill, Bryan D., Hryckowian, Andrew J., Higginbottom, Steven K., Le, Anthony, Cowan, Tina M., Nolan, Garry P., Fischbach, Michael A., Sonnenburg, Justin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 7682
container_start_page 648
container_title Nature (London)
container_volume 551
creator Dodd, Dylan
Spitzer, Matthew H.
Van Treuren, William
Merrill, Bryan D.
Hryckowian, Andrew J.
Higginbottom, Steven K.
Le, Anthony
Cowan, Tina M.
Nolan, Garry P.
Fischbach, Michael A.
Sonnenburg, Justin L.
description A pathway for the production of aromatic amino acid metabolites in Clostridium sporogenes is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity. Gut bacterial pharmacy The human microbiome has a substantial effect on our health. Our gut microbes produce a range of small molecules, many of which can reach relevant concentrations, yet we know surprisingly little about microbial metabolic pathways and how they affect the host. Here, Justin Sonnenburg, Michael Fischbach and colleagues use genetics and metabolic profiling to identify the gene cluster of Clostridium sporogenes that metabolizes aromatic amino acids, several of the products of which are produced exclusively by the microbiota. For example, the neuroprotective agent indolepropionic acid (IPA) was also produced by several other gut bacteria. In mice with controlled bacterial colonies, the serum levels of IPA and host physiology can be modulated by genetic modification of C. sporogenes . The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream 1 , 2 , where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont Clostridium sporogenes that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating C. sporogenes , we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.
doi_str_mv 10.1038/nature24661
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A516460259</galeid><sourcerecordid>A516460259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c648t-d8b7a463f0fa4d647d10f4a7174a0758c99b949ce259ad32a6d35be0d8c8f1db3</originalsourceid><addsrcrecordid>eNp10t1r1TAYB-AiijubXnkvxd0o2pm0aZreCIeDH4OhoBPBm_A2fdtltMlZkk7nX28Om8dzpJKLQPLkl683SZ5QckJJIV4bCJPDnHFO7yULyiqeMS6q-8mCkFxkRBT8IDn0_pIQUtKKPUwO8ppyUZJ8kXxfpv0U0gZUQKdhSNcQLn7ATTpigMYO-hf6FJwdIWiVwqiNTUHp1qfaBJsabTBV2qlpiMD022UB_aPkQQeDx8d3_VHy9d3b89WH7OzT-9PV8ixTnImQtaKpgPGiIx2wlrOqpaRjUMWTAqlKoeq6qVmtMC9raIsceFuUDZJWKNHRtimOkje3ueupGbFVaIKDQa6dHsHdSAta7s8YfSF7ey3L-AQxOQY8vwtw9mpCH-SovcJhAIN28pLWvBKc5JxEevwPvbSTM_F6UVWk5jkl5V_Vw4BSm87GfdUmVC5LylnMKjfbZjOqR4PxkNZgp-Pwnn8249VaX8lddDKDYmtx1Go29cXegmgC_gw9TN7L0y-f9-3L_9vl-bfVx1mtnPXeYbf9EkrkpnLlTuVG_XT3F7f2T6lG8OoW-DhlenQ7Tz-T9xs2jPZG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970962105</pqid></control><display><type>article</type><title>A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Dodd, Dylan ; Spitzer, Matthew H. ; Van Treuren, William ; Merrill, Bryan D. ; Hryckowian, Andrew J. ; Higginbottom, Steven K. ; Le, Anthony ; Cowan, Tina M. ; Nolan, Garry P. ; Fischbach, Michael A. ; Sonnenburg, Justin L.</creator><creatorcontrib>Dodd, Dylan ; Spitzer, Matthew H. ; Van Treuren, William ; Merrill, Bryan D. ; Hryckowian, Andrew J. ; Higginbottom, Steven K. ; Le, Anthony ; Cowan, Tina M. ; Nolan, Garry P. ; Fischbach, Michael A. ; Sonnenburg, Justin L.</creatorcontrib><description>A pathway for the production of aromatic amino acid metabolites in Clostridium sporogenes is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity. Gut bacterial pharmacy The human microbiome has a substantial effect on our health. Our gut microbes produce a range of small molecules, many of which can reach relevant concentrations, yet we know surprisingly little about microbial metabolic pathways and how they affect the host. Here, Justin Sonnenburg, Michael Fischbach and colleagues use genetics and metabolic profiling to identify the gene cluster of Clostridium sporogenes that metabolizes aromatic amino acids, several of the products of which are produced exclusively by the microbiota. For example, the neuroprotective agent indolepropionic acid (IPA) was also produced by several other gut bacteria. In mice with controlled bacterial colonies, the serum levels of IPA and host physiology can be modulated by genetic modification of C. sporogenes . The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream 1 , 2 , where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont Clostridium sporogenes that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating C. sporogenes , we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature24661</identifier><identifier>PMID: 29168502</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 45 ; 45/41 ; 45/44 ; 631/326/2565/2134 ; 631/45/320 ; 64/60 ; 82/58 ; Amino acids ; Amino Acids, Aromatic - blood ; Amino Acids, Aromatic - metabolism ; Animals ; Bacteria ; Blood Chemical Analysis ; Closterium - genetics ; Closterium - metabolism ; Clostridium ; Digestive system ; Enzymes ; Gastrointestinal Microbiome - genetics ; Gastrointestinal Microbiome - physiology ; Gastrointestinal tract ; Genetic engineering ; Genetics ; Germ-Free Life ; Gnotobiotic ; Humanities and Social Sciences ; Humans ; Immunity ; Indoles - blood ; Indoles - metabolism ; Intestinal microflora ; Intestinal Mucosa - metabolism ; Intestine ; letter ; Male ; Metabolic Networks and Pathways - genetics ; Metabolic pathways ; Metabolism ; Metabolites ; Metabolome - physiology ; Metabolomics ; Mice ; Microbiota ; Microbiota (Symbiotic organisms) ; Microorganisms ; multidisciplinary ; Multigene Family - genetics ; Mutagenesis ; Permeability ; Phenylalanine ; Phenylalanine - metabolism ; Physiological aspects ; Reductases ; Science ; Serum - chemistry ; Serum - metabolism ; Serum levels ; Substrates ; Tryptophan ; Tryptophan - metabolism ; Tyrosine ; Tyrosine - metabolism</subject><ispartof>Nature (London), 2017-11, Vol.551 (7682), p.648-652</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 30, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c648t-d8b7a463f0fa4d647d10f4a7174a0758c99b949ce259ad32a6d35be0d8c8f1db3</citedby><cites>FETCH-LOGICAL-c648t-d8b7a463f0fa4d647d10f4a7174a0758c99b949ce259ad32a6d35be0d8c8f1db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature24661$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature24661$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29168502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dodd, Dylan</creatorcontrib><creatorcontrib>Spitzer, Matthew H.</creatorcontrib><creatorcontrib>Van Treuren, William</creatorcontrib><creatorcontrib>Merrill, Bryan D.</creatorcontrib><creatorcontrib>Hryckowian, Andrew J.</creatorcontrib><creatorcontrib>Higginbottom, Steven K.</creatorcontrib><creatorcontrib>Le, Anthony</creatorcontrib><creatorcontrib>Cowan, Tina M.</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Fischbach, Michael A.</creatorcontrib><creatorcontrib>Sonnenburg, Justin L.</creatorcontrib><title>A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A pathway for the production of aromatic amino acid metabolites in Clostridium sporogenes is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity. Gut bacterial pharmacy The human microbiome has a substantial effect on our health. Our gut microbes produce a range of small molecules, many of which can reach relevant concentrations, yet we know surprisingly little about microbial metabolic pathways and how they affect the host. Here, Justin Sonnenburg, Michael Fischbach and colleagues use genetics and metabolic profiling to identify the gene cluster of Clostridium sporogenes that metabolizes aromatic amino acids, several of the products of which are produced exclusively by the microbiota. For example, the neuroprotective agent indolepropionic acid (IPA) was also produced by several other gut bacteria. In mice with controlled bacterial colonies, the serum levels of IPA and host physiology can be modulated by genetic modification of C. sporogenes . The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream 1 , 2 , where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont Clostridium sporogenes that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating C. sporogenes , we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.</description><subject>13/1</subject><subject>45</subject><subject>45/41</subject><subject>45/44</subject><subject>631/326/2565/2134</subject><subject>631/45/320</subject><subject>64/60</subject><subject>82/58</subject><subject>Amino acids</subject><subject>Amino Acids, Aromatic - blood</subject><subject>Amino Acids, Aromatic - metabolism</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Blood Chemical Analysis</subject><subject>Closterium - genetics</subject><subject>Closterium - metabolism</subject><subject>Clostridium</subject><subject>Digestive system</subject><subject>Enzymes</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gastrointestinal tract</subject><subject>Genetic engineering</subject><subject>Genetics</subject><subject>Germ-Free Life</subject><subject>Gnotobiotic</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunity</subject><subject>Indoles - blood</subject><subject>Indoles - metabolism</subject><subject>Intestinal microflora</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestine</subject><subject>letter</subject><subject>Male</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome - physiology</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>Multigene Family - genetics</subject><subject>Mutagenesis</subject><subject>Permeability</subject><subject>Phenylalanine</subject><subject>Phenylalanine - metabolism</subject><subject>Physiological aspects</subject><subject>Reductases</subject><subject>Science</subject><subject>Serum - chemistry</subject><subject>Serum - metabolism</subject><subject>Serum levels</subject><subject>Substrates</subject><subject>Tryptophan</subject><subject>Tryptophan - metabolism</subject><subject>Tyrosine</subject><subject>Tyrosine - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10t1r1TAYB-AiijubXnkvxd0o2pm0aZreCIeDH4OhoBPBm_A2fdtltMlZkk7nX28Om8dzpJKLQPLkl683SZ5QckJJIV4bCJPDnHFO7yULyiqeMS6q-8mCkFxkRBT8IDn0_pIQUtKKPUwO8ppyUZJ8kXxfpv0U0gZUQKdhSNcQLn7ATTpigMYO-hf6FJwdIWiVwqiNTUHp1qfaBJsabTBV2qlpiMD022UB_aPkQQeDx8d3_VHy9d3b89WH7OzT-9PV8ixTnImQtaKpgPGiIx2wlrOqpaRjUMWTAqlKoeq6qVmtMC9raIsceFuUDZJWKNHRtimOkje3ueupGbFVaIKDQa6dHsHdSAta7s8YfSF7ey3L-AQxOQY8vwtw9mpCH-SovcJhAIN28pLWvBKc5JxEevwPvbSTM_F6UVWk5jkl5V_Vw4BSm87GfdUmVC5LylnMKjfbZjOqR4PxkNZgp-Pwnn8249VaX8lddDKDYmtx1Go29cXegmgC_gw9TN7L0y-f9-3L_9vl-bfVx1mtnPXeYbf9EkrkpnLlTuVG_XT3F7f2T6lG8OoW-DhlenQ7Tz-T9xs2jPZG</recordid><startdate>20171130</startdate><enddate>20171130</enddate><creator>Dodd, Dylan</creator><creator>Spitzer, Matthew H.</creator><creator>Van Treuren, William</creator><creator>Merrill, Bryan D.</creator><creator>Hryckowian, Andrew J.</creator><creator>Higginbottom, Steven K.</creator><creator>Le, Anthony</creator><creator>Cowan, Tina M.</creator><creator>Nolan, Garry P.</creator><creator>Fischbach, Michael A.</creator><creator>Sonnenburg, Justin L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171130</creationdate><title>A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites</title><author>Dodd, Dylan ; Spitzer, Matthew H. ; Van Treuren, William ; Merrill, Bryan D. ; Hryckowian, Andrew J. ; Higginbottom, Steven K. ; Le, Anthony ; Cowan, Tina M. ; Nolan, Garry P. ; Fischbach, Michael A. ; Sonnenburg, Justin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c648t-d8b7a463f0fa4d647d10f4a7174a0758c99b949ce259ad32a6d35be0d8c8f1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/1</topic><topic>45</topic><topic>45/41</topic><topic>45/44</topic><topic>631/326/2565/2134</topic><topic>631/45/320</topic><topic>64/60</topic><topic>82/58</topic><topic>Amino acids</topic><topic>Amino Acids, Aromatic - blood</topic><topic>Amino Acids, Aromatic - metabolism</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Blood Chemical Analysis</topic><topic>Closterium - genetics</topic><topic>Closterium - metabolism</topic><topic>Clostridium</topic><topic>Digestive system</topic><topic>Enzymes</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gastrointestinal tract</topic><topic>Genetic engineering</topic><topic>Genetics</topic><topic>Germ-Free Life</topic><topic>Gnotobiotic</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunity</topic><topic>Indoles - blood</topic><topic>Indoles - metabolism</topic><topic>Intestinal microflora</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestine</topic><topic>letter</topic><topic>Male</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome - physiology</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>Multigene Family - genetics</topic><topic>Mutagenesis</topic><topic>Permeability</topic><topic>Phenylalanine</topic><topic>Phenylalanine - metabolism</topic><topic>Physiological aspects</topic><topic>Reductases</topic><topic>Science</topic><topic>Serum - chemistry</topic><topic>Serum - metabolism</topic><topic>Serum levels</topic><topic>Substrates</topic><topic>Tryptophan</topic><topic>Tryptophan - metabolism</topic><topic>Tyrosine</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dodd, Dylan</creatorcontrib><creatorcontrib>Spitzer, Matthew H.</creatorcontrib><creatorcontrib>Van Treuren, William</creatorcontrib><creatorcontrib>Merrill, Bryan D.</creatorcontrib><creatorcontrib>Hryckowian, Andrew J.</creatorcontrib><creatorcontrib>Higginbottom, Steven K.</creatorcontrib><creatorcontrib>Le, Anthony</creatorcontrib><creatorcontrib>Cowan, Tina M.</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Fischbach, Michael A.</creatorcontrib><creatorcontrib>Sonnenburg, Justin L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dodd, Dylan</au><au>Spitzer, Matthew H.</au><au>Van Treuren, William</au><au>Merrill, Bryan D.</au><au>Hryckowian, Andrew J.</au><au>Higginbottom, Steven K.</au><au>Le, Anthony</au><au>Cowan, Tina M.</au><au>Nolan, Garry P.</au><au>Fischbach, Michael A.</au><au>Sonnenburg, Justin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-11-30</date><risdate>2017</risdate><volume>551</volume><issue>7682</issue><spage>648</spage><epage>652</epage><pages>648-652</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>A pathway for the production of aromatic amino acid metabolites in Clostridium sporogenes is described; modulation of serum levels of these metabolites in gnotobiotic mice affects intestinal permeability and systemic immunity. Gut bacterial pharmacy The human microbiome has a substantial effect on our health. Our gut microbes produce a range of small molecules, many of which can reach relevant concentrations, yet we know surprisingly little about microbial metabolic pathways and how they affect the host. Here, Justin Sonnenburg, Michael Fischbach and colleagues use genetics and metabolic profiling to identify the gene cluster of Clostridium sporogenes that metabolizes aromatic amino acids, several of the products of which are produced exclusively by the microbiota. For example, the neuroprotective agent indolepropionic acid (IPA) was also produced by several other gut bacteria. In mice with controlled bacterial colonies, the serum levels of IPA and host physiology can be modulated by genetic modification of C. sporogenes . The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream 1 , 2 , where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont Clostridium sporogenes that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating C. sporogenes , we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29168502</pmid><doi>10.1038/nature24661</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2017-11, Vol.551 (7682), p.648-652
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850949
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13/1
45
45/41
45/44
631/326/2565/2134
631/45/320
64/60
82/58
Amino acids
Amino Acids, Aromatic - blood
Amino Acids, Aromatic - metabolism
Animals
Bacteria
Blood Chemical Analysis
Closterium - genetics
Closterium - metabolism
Clostridium
Digestive system
Enzymes
Gastrointestinal Microbiome - genetics
Gastrointestinal Microbiome - physiology
Gastrointestinal tract
Genetic engineering
Genetics
Germ-Free Life
Gnotobiotic
Humanities and Social Sciences
Humans
Immunity
Indoles - blood
Indoles - metabolism
Intestinal microflora
Intestinal Mucosa - metabolism
Intestine
letter
Male
Metabolic Networks and Pathways - genetics
Metabolic pathways
Metabolism
Metabolites
Metabolome - physiology
Metabolomics
Mice
Microbiota
Microbiota (Symbiotic organisms)
Microorganisms
multidisciplinary
Multigene Family - genetics
Mutagenesis
Permeability
Phenylalanine
Phenylalanine - metabolism
Physiological aspects
Reductases
Science
Serum - chemistry
Serum - metabolism
Serum levels
Substrates
Tryptophan
Tryptophan - metabolism
Tyrosine
Tyrosine - metabolism
title A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gut%20bacterial%20pathway%20metabolizes%20aromatic%20amino%20acids%20into%20nine%20circulating%20metabolites&rft.jtitle=Nature%20(London)&rft.au=Dodd,%20Dylan&rft.date=2017-11-30&rft.volume=551&rft.issue=7682&rft.spage=648&rft.epage=652&rft.pages=648-652&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature24661&rft_dat=%3Cgale_pubme%3EA516460259%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970962105&rft_id=info:pmid/29168502&rft_galeid=A516460259&rfr_iscdi=true