Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series

Heterogeneity in individual-level transmissibility can be quantified by the dispersion parameter k of the offspring distribution. Quantifying heterogeneity is important as it affects other parameter estimates, it modulates the degree of unpredictability of an epidemic, and it needs to be accounted f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2017-11, Vol.34 (11), p.2982-2995
Hauptverfasser: Li, Lucy M., Grassly, Nicholas C., Fraser, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2995
container_issue 11
container_start_page 2982
container_title Molecular biology and evolution
container_volume 34
creator Li, Lucy M.
Grassly, Nicholas C.
Fraser, Christophe
description Heterogeneity in individual-level transmissibility can be quantified by the dispersion parameter k of the offspring distribution. Quantifying heterogeneity is important as it affects other parameter estimates, it modulates the degree of unpredictability of an epidemic, and it needs to be accounted for in models of infection control. Aggregated data such as incidence time series are often not sufficiently informative to estimate k. Incorporating phylogenetic analysis can help to estimate k concurrently with other epidemiological parameters. We have developed an inference framework that uses particle Markov Chain Monte Carlo to estimate k and other epidemiological parameters using both incidence time series and the pathogen phylogeny. Using the framework to fit a modified compartmental transmission model that includes the parameter k to simulated data, we found that more accurate and less biased estimates of the reproductive number were obtained by combining epidemiological and phylogenetic analyses. However, k was most accurately estimated using pathogen phylogeny alone. Accurately estimating k was necessary for unbiased estimates of the reproductive number, but it did not affect the accuracy of reporting probability and epidemic start date estimates. We further demonstrated that inference was possible in the presence of phylogenetic uncertainty by sampling from the posterior distribution of phylogenies. Finally, we used the inference framework to estimate transmission parameters from epidemiological and genetic data collected during a poliovirus outbreak. Despite the large degree of phylogenetic uncertainty, we demonstrated that incorporating phylogenetic data in parameter inference improved the accuracy and precision of estimates.
doi_str_mv 10.1093/molbev/msx195
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msx195</oup_id><sourcerecordid>1948753271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-2f5f435ed21a9d1e563bd645270b3b090924005827b636e29316471915912de3</originalsourceid><addsrcrecordid>eNqFkUlPwzAQhS0EgrIcuSIfuQS8JvEFCRCbhASIcjZOMmmNErvYCaL_nlQtBU6cZjTz6c3yEDqk5IQSxU9b3xTwcdrGT6rkBhpRybOEZlRtohHJhlwQnu-g3RjfCKFCpOk22mG5ymlG1Ai9PvXGdbaeWzfB42BcbG2M1jt8Cx0EPwEHtpvjl7gALnw3xY-mmy7q-HE6bxaJhYiNq_CdK20FrgQ8ti3gZwhDZx9t1aaJcLCKe2h8fTW-vE3uH27uLs_vk1Iw0iWslrXgEipGjaooyJQXVSoky0jBC6KIYoIQmbOsSHkKTHGaiuFKKhVlFfA9dLaUnfVFC1UJrgum0bNgWxPm2hur_3acneqJ_9Ayl4QLPggcrwSCf-8hdnp4RAlNYxz4PmqqRJ5JzjI6oMkSLYOPMUC9HkOJXpiil6bopSkDf_R7tzX97cLPbN_P_tH6Ai_MmZY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948753271</pqid></control><display><type>article</type><title>Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Lucy M. ; Grassly, Nicholas C. ; Fraser, Christophe</creator><creatorcontrib>Li, Lucy M. ; Grassly, Nicholas C. ; Fraser, Christophe</creatorcontrib><description>Heterogeneity in individual-level transmissibility can be quantified by the dispersion parameter k of the offspring distribution. Quantifying heterogeneity is important as it affects other parameter estimates, it modulates the degree of unpredictability of an epidemic, and it needs to be accounted for in models of infection control. Aggregated data such as incidence time series are often not sufficiently informative to estimate k. Incorporating phylogenetic analysis can help to estimate k concurrently with other epidemiological parameters. We have developed an inference framework that uses particle Markov Chain Monte Carlo to estimate k and other epidemiological parameters using both incidence time series and the pathogen phylogeny. Using the framework to fit a modified compartmental transmission model that includes the parameter k to simulated data, we found that more accurate and less biased estimates of the reproductive number were obtained by combining epidemiological and phylogenetic analyses. However, k was most accurately estimated using pathogen phylogeny alone. Accurately estimating k was necessary for unbiased estimates of the reproductive number, but it did not affect the accuracy of reporting probability and epidemic start date estimates. We further demonstrated that inference was possible in the presence of phylogenetic uncertainty by sampling from the posterior distribution of phylogenies. Finally, we used the inference framework to estimate transmission parameters from epidemiological and genetic data collected during a poliovirus outbreak. Despite the large degree of phylogenetic uncertainty, we demonstrated that incorporating phylogenetic data in parameter inference improved the accuracy and precision of estimates.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msx195</identifier><identifier>PMID: 28981709</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Algorithms ; Bayes Theorem ; Computer Simulation ; Disease Outbreaks - statistics &amp; numerical data ; Disease Transmission, Infectious - statistics &amp; numerical data ; Epidemics - statistics &amp; numerical data ; Genetic Heterogeneity ; Humans ; Incidence ; Markov Chains ; Methods ; Monte Carlo Method ; Phylogeny ; Probability ; Uncertainty</subject><ispartof>Molecular biology and evolution, 2017-11, Vol.34 (11), p.2982-2995</ispartof><rights>The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2017</rights><rights>The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-2f5f435ed21a9d1e563bd645270b3b090924005827b636e29316471915912de3</citedby><cites>FETCH-LOGICAL-c420t-2f5f435ed21a9d1e563bd645270b3b090924005827b636e29316471915912de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850343/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850343/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28981709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lucy M.</creatorcontrib><creatorcontrib>Grassly, Nicholas C.</creatorcontrib><creatorcontrib>Fraser, Christophe</creatorcontrib><title>Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Heterogeneity in individual-level transmissibility can be quantified by the dispersion parameter k of the offspring distribution. Quantifying heterogeneity is important as it affects other parameter estimates, it modulates the degree of unpredictability of an epidemic, and it needs to be accounted for in models of infection control. Aggregated data such as incidence time series are often not sufficiently informative to estimate k. Incorporating phylogenetic analysis can help to estimate k concurrently with other epidemiological parameters. We have developed an inference framework that uses particle Markov Chain Monte Carlo to estimate k and other epidemiological parameters using both incidence time series and the pathogen phylogeny. Using the framework to fit a modified compartmental transmission model that includes the parameter k to simulated data, we found that more accurate and less biased estimates of the reproductive number were obtained by combining epidemiological and phylogenetic analyses. However, k was most accurately estimated using pathogen phylogeny alone. Accurately estimating k was necessary for unbiased estimates of the reproductive number, but it did not affect the accuracy of reporting probability and epidemic start date estimates. We further demonstrated that inference was possible in the presence of phylogenetic uncertainty by sampling from the posterior distribution of phylogenies. Finally, we used the inference framework to estimate transmission parameters from epidemiological and genetic data collected during a poliovirus outbreak. Despite the large degree of phylogenetic uncertainty, we demonstrated that incorporating phylogenetic data in parameter inference improved the accuracy and precision of estimates.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Computer Simulation</subject><subject>Disease Outbreaks - statistics &amp; numerical data</subject><subject>Disease Transmission, Infectious - statistics &amp; numerical data</subject><subject>Epidemics - statistics &amp; numerical data</subject><subject>Genetic Heterogeneity</subject><subject>Humans</subject><subject>Incidence</subject><subject>Markov Chains</subject><subject>Methods</subject><subject>Monte Carlo Method</subject><subject>Phylogeny</subject><subject>Probability</subject><subject>Uncertainty</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUlPwzAQhS0EgrIcuSIfuQS8JvEFCRCbhASIcjZOMmmNErvYCaL_nlQtBU6cZjTz6c3yEDqk5IQSxU9b3xTwcdrGT6rkBhpRybOEZlRtohHJhlwQnu-g3RjfCKFCpOk22mG5ymlG1Ai9PvXGdbaeWzfB42BcbG2M1jt8Cx0EPwEHtpvjl7gALnw3xY-mmy7q-HE6bxaJhYiNq_CdK20FrgQ8ti3gZwhDZx9t1aaJcLCKe2h8fTW-vE3uH27uLs_vk1Iw0iWslrXgEipGjaooyJQXVSoky0jBC6KIYoIQmbOsSHkKTHGaiuFKKhVlFfA9dLaUnfVFC1UJrgum0bNgWxPm2hur_3acneqJ_9Ayl4QLPggcrwSCf-8hdnp4RAlNYxz4PmqqRJ5JzjI6oMkSLYOPMUC9HkOJXpiil6bopSkDf_R7tzX97cLPbN_P_tH6Ai_MmZY</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Li, Lucy M.</creator><creator>Grassly, Nicholas C.</creator><creator>Fraser, Christophe</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171101</creationdate><title>Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series</title><author>Li, Lucy M. ; Grassly, Nicholas C. ; Fraser, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-2f5f435ed21a9d1e563bd645270b3b090924005827b636e29316471915912de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Computer Simulation</topic><topic>Disease Outbreaks - statistics &amp; numerical data</topic><topic>Disease Transmission, Infectious - statistics &amp; numerical data</topic><topic>Epidemics - statistics &amp; numerical data</topic><topic>Genetic Heterogeneity</topic><topic>Humans</topic><topic>Incidence</topic><topic>Markov Chains</topic><topic>Methods</topic><topic>Monte Carlo Method</topic><topic>Phylogeny</topic><topic>Probability</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lucy M.</creatorcontrib><creatorcontrib>Grassly, Nicholas C.</creatorcontrib><creatorcontrib>Fraser, Christophe</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lucy M.</au><au>Grassly, Nicholas C.</au><au>Fraser, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>34</volume><issue>11</issue><spage>2982</spage><epage>2995</epage><pages>2982-2995</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Heterogeneity in individual-level transmissibility can be quantified by the dispersion parameter k of the offspring distribution. Quantifying heterogeneity is important as it affects other parameter estimates, it modulates the degree of unpredictability of an epidemic, and it needs to be accounted for in models of infection control. Aggregated data such as incidence time series are often not sufficiently informative to estimate k. Incorporating phylogenetic analysis can help to estimate k concurrently with other epidemiological parameters. We have developed an inference framework that uses particle Markov Chain Monte Carlo to estimate k and other epidemiological parameters using both incidence time series and the pathogen phylogeny. Using the framework to fit a modified compartmental transmission model that includes the parameter k to simulated data, we found that more accurate and less biased estimates of the reproductive number were obtained by combining epidemiological and phylogenetic analyses. However, k was most accurately estimated using pathogen phylogeny alone. Accurately estimating k was necessary for unbiased estimates of the reproductive number, but it did not affect the accuracy of reporting probability and epidemic start date estimates. We further demonstrated that inference was possible in the presence of phylogenetic uncertainty by sampling from the posterior distribution of phylogenies. Finally, we used the inference framework to estimate transmission parameters from epidemiological and genetic data collected during a poliovirus outbreak. Despite the large degree of phylogenetic uncertainty, we demonstrated that incorporating phylogenetic data in parameter inference improved the accuracy and precision of estimates.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>28981709</pmid><doi>10.1093/molbev/msx195</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2017-11, Vol.34 (11), p.2982-2995
issn 0737-4038
1537-1719
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850343
source Oxford Journals Open Access Collection; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Bayes Theorem
Computer Simulation
Disease Outbreaks - statistics & numerical data
Disease Transmission, Infectious - statistics & numerical data
Epidemics - statistics & numerical data
Genetic Heterogeneity
Humans
Incidence
Markov Chains
Methods
Monte Carlo Method
Phylogeny
Probability
Uncertainty
title Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Transmission%20Heterogeneity%20Using%20Both%20Pathogen%20Phylogenies%20and%20Incidence%20Time%20Series&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Li,%20Lucy%20M.&rft.date=2017-11-01&rft.volume=34&rft.issue=11&rft.spage=2982&rft.epage=2995&rft.pages=2982-2995&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msx195&rft_dat=%3Cproquest_pubme%3E1948753271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948753271&rft_id=info:pmid/28981709&rft_oup_id=10.1093/molbev/msx195&rfr_iscdi=true