Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo
Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vit...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2018-01, Vol.9 (1), p.1-1, Article 1 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Cell death & disease |
container_volume | 9 |
creator | Gargioli, Cesare Turturici, Giuseppina Barreca, Maria M. Spinello, Walter Fuoco, Claudia Testa, Stefano Feo, Salvatore Cannata, Stefano M. Cossu, Giulio Sconzo, Gabriella Geraci, Fabiana |
description | Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation. |
doi_str_mv | 10.1038/s41419-017-0012-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5849040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986112267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-55e9007dd550770ba3e41a7360da6a238ed35118c0c7ac442341e1e6aa2205ef3</originalsourceid><addsrcrecordid>eNp1kkFvFSEQgDdGY5vaH-DFkHjxsjqwsMteTExjq0mTXvRMeDBvS7MPVmBX-3_8obJubZ4mcmHIfHwwMFX1ksJbCo18lzjltK-BdjUAZXX_pDplwGnNpeyfHsUn1XlKd1BG0wAT7fPqhPWsl72Up9XPmx_O6uwWJClHTIlMEU3w1mUXvPMDCXtyCHNCMmF0i05mHnUkh_swoHem4L-DHGIiCUc0ORFN0rybwlTI1bIqDI5jIt9dvi1Z61J23uSCxaU4R6Lton3WAxLnyeJyDER7uy2W8KJ6ttdjwvOH-az6evnxy8Wn-vrm6vPFh-vacIBcC4E9QGetENB1sNMNcqq7pgWrW80aibYRlEoDptOGc9ZwihRbrRkDgfvmrHq_ead5d0Br0OeoRzVFd9DxXgXt1N8Z727VEBYlJO-BQxG8eRDE8G3GlNXBpbV07bG8oaK95J1gQvYFff0Pehfm6Et5K9VSyljbFYpulIkhpYj7x8tQUGsbqK0NVGkDtbaBWs2vjqt43PHn0wvANiCVlB8wHh39X-svbRTCVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986112267</pqid></control><display><type>article</type><title>Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo</title><source>Nature Journals Open Access</source><source>PubMed Central (Open Access)</source><source>Springer Open Access</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Freely accessible e-journals</source><source>Directory of Open Access Journals (Open Access)</source><creator>Gargioli, Cesare ; Turturici, Giuseppina ; Barreca, Maria M. ; Spinello, Walter ; Fuoco, Claudia ; Testa, Stefano ; Feo, Salvatore ; Cannata, Stefano M. ; Cossu, Giulio ; Sconzo, Gabriella ; Geraci, Fabiana</creator><creatorcontrib>Gargioli, Cesare ; Turturici, Giuseppina ; Barreca, Maria M. ; Spinello, Walter ; Fuoco, Claudia ; Testa, Stefano ; Feo, Salvatore ; Cannata, Stefano M. ; Cossu, Giulio ; Sconzo, Gabriella ; Geraci, Fabiana</creatorcontrib><description>Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-017-0012-9</identifier><identifier>PMID: 29298988</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Antibodies ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cell Cycle Checkpoints - drug effects ; Cell Differentiation ; Cell Line ; Cell migration ; Cell Movement - drug effects ; Cell proliferation ; Cell self-renewal ; Cell survival ; Cell Survival - drug effects ; Engraftment ; Gene expression ; Hydrogen Peroxide - pharmacology ; Immunology ; Integration ; Life Sciences ; Matrix Metalloproteinase 2 - genetics ; Matrix Metalloproteinase 2 - metabolism ; Mice ; Mice, SCID ; Muscle, Skeletal - cytology ; Muscular Dystrophy, Animal - therapy ; Oxidative stress ; Oxidative Stress - drug effects ; p38 Mitogen-Activated Protein Kinases - metabolism ; Protein Isoforms - metabolism ; Reactive Oxygen Species - metabolism ; Rodents ; Sarcoglycans - deficiency ; Sarcoglycans - genetics ; Skeletal muscle ; Stem Cell Transplantation ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - metabolism ; Transplantation</subject><ispartof>Cell death & disease, 2018-01, Vol.9 (1), p.1-1, Article 1</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-55e9007dd550770ba3e41a7360da6a238ed35118c0c7ac442341e1e6aa2205ef3</citedby><cites>FETCH-LOGICAL-c400t-55e9007dd550770ba3e41a7360da6a238ed35118c0c7ac442341e1e6aa2205ef3</cites><orcidid>0000-0001-9734-1765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849040/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849040/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29298988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gargioli, Cesare</creatorcontrib><creatorcontrib>Turturici, Giuseppina</creatorcontrib><creatorcontrib>Barreca, Maria M.</creatorcontrib><creatorcontrib>Spinello, Walter</creatorcontrib><creatorcontrib>Fuoco, Claudia</creatorcontrib><creatorcontrib>Testa, Stefano</creatorcontrib><creatorcontrib>Feo, Salvatore</creatorcontrib><creatorcontrib>Cannata, Stefano M.</creatorcontrib><creatorcontrib>Cossu, Giulio</creatorcontrib><creatorcontrib>Sconzo, Gabriella</creatorcontrib><creatorcontrib>Geraci, Fabiana</creatorcontrib><title>Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo</title><title>Cell death & disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell proliferation</subject><subject>Cell self-renewal</subject><subject>Cell survival</subject><subject>Cell Survival - drug effects</subject><subject>Engraftment</subject><subject>Gene expression</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Immunology</subject><subject>Integration</subject><subject>Life Sciences</subject><subject>Matrix Metalloproteinase 2 - genetics</subject><subject>Matrix Metalloproteinase 2 - metabolism</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscular Dystrophy, Animal - therapy</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Protein Isoforms - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><subject>Sarcoglycans - deficiency</subject><subject>Sarcoglycans - genetics</subject><subject>Skeletal muscle</subject><subject>Stem Cell Transplantation</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Transplantation</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kkFvFSEQgDdGY5vaH-DFkHjxsjqwsMteTExjq0mTXvRMeDBvS7MPVmBX-3_8obJubZ4mcmHIfHwwMFX1ksJbCo18lzjltK-BdjUAZXX_pDplwGnNpeyfHsUn1XlKd1BG0wAT7fPqhPWsl72Up9XPmx_O6uwWJClHTIlMEU3w1mUXvPMDCXtyCHNCMmF0i05mHnUkh_swoHem4L-DHGIiCUc0ORFN0rybwlTI1bIqDI5jIt9dvi1Z61J23uSCxaU4R6Lton3WAxLnyeJyDER7uy2W8KJ6ttdjwvOH-az6evnxy8Wn-vrm6vPFh-vacIBcC4E9QGetENB1sNMNcqq7pgWrW80aibYRlEoDptOGc9ZwihRbrRkDgfvmrHq_ead5d0Br0OeoRzVFd9DxXgXt1N8Z727VEBYlJO-BQxG8eRDE8G3GlNXBpbV07bG8oaK95J1gQvYFff0Pehfm6Et5K9VSyljbFYpulIkhpYj7x8tQUGsbqK0NVGkDtbaBWs2vjqt43PHn0wvANiCVlB8wHh39X-svbRTCVA</recordid><startdate>20180103</startdate><enddate>20180103</enddate><creator>Gargioli, Cesare</creator><creator>Turturici, Giuseppina</creator><creator>Barreca, Maria M.</creator><creator>Spinello, Walter</creator><creator>Fuoco, Claudia</creator><creator>Testa, Stefano</creator><creator>Feo, Salvatore</creator><creator>Cannata, Stefano M.</creator><creator>Cossu, Giulio</creator><creator>Sconzo, Gabriella</creator><creator>Geraci, Fabiana</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9734-1765</orcidid></search><sort><creationdate>20180103</creationdate><title>Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo</title><author>Gargioli, Cesare ; Turturici, Giuseppina ; Barreca, Maria M. ; Spinello, Walter ; Fuoco, Claudia ; Testa, Stefano ; Feo, Salvatore ; Cannata, Stefano M. ; Cossu, Giulio ; Sconzo, Gabriella ; Geraci, Fabiana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-55e9007dd550770ba3e41a7360da6a238ed35118c0c7ac442341e1e6aa2205ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell proliferation</topic><topic>Cell self-renewal</topic><topic>Cell survival</topic><topic>Cell Survival - drug effects</topic><topic>Engraftment</topic><topic>Gene expression</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Immunology</topic><topic>Integration</topic><topic>Life Sciences</topic><topic>Matrix Metalloproteinase 2 - genetics</topic><topic>Matrix Metalloproteinase 2 - metabolism</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscular Dystrophy, Animal - therapy</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Protein Isoforms - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><topic>Sarcoglycans - deficiency</topic><topic>Sarcoglycans - genetics</topic><topic>Skeletal muscle</topic><topic>Stem Cell Transplantation</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gargioli, Cesare</creatorcontrib><creatorcontrib>Turturici, Giuseppina</creatorcontrib><creatorcontrib>Barreca, Maria M.</creatorcontrib><creatorcontrib>Spinello, Walter</creatorcontrib><creatorcontrib>Fuoco, Claudia</creatorcontrib><creatorcontrib>Testa, Stefano</creatorcontrib><creatorcontrib>Feo, Salvatore</creatorcontrib><creatorcontrib>Cannata, Stefano M.</creatorcontrib><creatorcontrib>Cossu, Giulio</creatorcontrib><creatorcontrib>Sconzo, Gabriella</creatorcontrib><creatorcontrib>Geraci, Fabiana</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death & disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gargioli, Cesare</au><au>Turturici, Giuseppina</au><au>Barreca, Maria M.</au><au>Spinello, Walter</au><au>Fuoco, Claudia</au><au>Testa, Stefano</au><au>Feo, Salvatore</au><au>Cannata, Stefano M.</au><au>Cossu, Giulio</au><au>Sconzo, Gabriella</au><au>Geraci, Fabiana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo</atitle><jtitle>Cell death & disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2018-01-03</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><artnum>1</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29298988</pmid><doi>10.1038/s41419-017-0012-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9734-1765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-4889 |
ispartof | Cell death & disease, 2018-01, Vol.9 (1), p.1-1, Article 1 |
issn | 2041-4889 2041-4889 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5849040 |
source | Nature Journals Open Access; PubMed Central (Open Access); Springer Open Access; MEDLINE; Elektronische Zeitschriftenbibliothek - Freely accessible e-journals; Directory of Open Access Journals (Open Access) |
subjects | Animals Antibodies Biochemistry Biomedical and Life Sciences Cell Biology Cell Culture Cell Cycle Checkpoints - drug effects Cell Differentiation Cell Line Cell migration Cell Movement - drug effects Cell proliferation Cell self-renewal Cell survival Cell Survival - drug effects Engraftment Gene expression Hydrogen Peroxide - pharmacology Immunology Integration Life Sciences Matrix Metalloproteinase 2 - genetics Matrix Metalloproteinase 2 - metabolism Mice Mice, SCID Muscle, Skeletal - cytology Muscular Dystrophy, Animal - therapy Oxidative stress Oxidative Stress - drug effects p38 Mitogen-Activated Protein Kinases - metabolism Protein Isoforms - metabolism Reactive Oxygen Species - metabolism Rodents Sarcoglycans - deficiency Sarcoglycans - genetics Skeletal muscle Stem Cell Transplantation Stem Cells - cytology Stem Cells - drug effects Stem Cells - metabolism Transplantation |
title | Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20stress%20preconditioning%20of%20mouse%20perivascular%20myogenic%20progenitors%20selects%20a%20subpopulation%20of%20cells%20with%20a%20distinct%20survival%20advantage%20in%20vitro%20and%20in%20vivo&rft.jtitle=Cell%20death%20&%20disease&rft.au=Gargioli,%20Cesare&rft.date=2018-01-03&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.artnum=1&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-017-0012-9&rft_dat=%3Cproquest_pubme%3E1986112267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986112267&rft_id=info:pmid/29298988&rfr_iscdi=true |