Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo

Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2018-01, Vol.9 (1), p.1-1, Article 1
Hauptverfasser: Gargioli, Cesare, Turturici, Giuseppina, Barreca, Maria M., Spinello, Walter, Fuoco, Claudia, Testa, Stefano, Feo, Salvatore, Cannata, Stefano M., Cossu, Giulio, Sconzo, Gabriella, Geraci, Fabiana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title Cell death & disease
container_volume 9
creator Gargioli, Cesare
Turturici, Giuseppina
Barreca, Maria M.
Spinello, Walter
Fuoco, Claudia
Testa, Stefano
Feo, Salvatore
Cannata, Stefano M.
Cossu, Giulio
Sconzo, Gabriella
Geraci, Fabiana
description Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.
doi_str_mv 10.1038/s41419-017-0012-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5849040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986112267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-55e9007dd550770ba3e41a7360da6a238ed35118c0c7ac442341e1e6aa2205ef3</originalsourceid><addsrcrecordid>eNp1kkFvFSEQgDdGY5vaH-DFkHjxsjqwsMteTExjq0mTXvRMeDBvS7MPVmBX-3_8obJubZ4mcmHIfHwwMFX1ksJbCo18lzjltK-BdjUAZXX_pDplwGnNpeyfHsUn1XlKd1BG0wAT7fPqhPWsl72Up9XPmx_O6uwWJClHTIlMEU3w1mUXvPMDCXtyCHNCMmF0i05mHnUkh_swoHem4L-DHGIiCUc0ORFN0rybwlTI1bIqDI5jIt9dvi1Z61J23uSCxaU4R6Lton3WAxLnyeJyDER7uy2W8KJ6ttdjwvOH-az6evnxy8Wn-vrm6vPFh-vacIBcC4E9QGetENB1sNMNcqq7pgWrW80aibYRlEoDptOGc9ZwihRbrRkDgfvmrHq_ead5d0Br0OeoRzVFd9DxXgXt1N8Z727VEBYlJO-BQxG8eRDE8G3GlNXBpbV07bG8oaK95J1gQvYFff0Pehfm6Et5K9VSyljbFYpulIkhpYj7x8tQUGsbqK0NVGkDtbaBWs2vjqt43PHn0wvANiCVlB8wHh39X-svbRTCVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986112267</pqid></control><display><type>article</type><title>Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo</title><source>Nature Journals Open Access</source><source>PubMed Central (Open Access)</source><source>Springer Open Access</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Freely accessible e-journals</source><source>Directory of Open Access Journals (Open Access)</source><creator>Gargioli, Cesare ; Turturici, Giuseppina ; Barreca, Maria M. ; Spinello, Walter ; Fuoco, Claudia ; Testa, Stefano ; Feo, Salvatore ; Cannata, Stefano M. ; Cossu, Giulio ; Sconzo, Gabriella ; Geraci, Fabiana</creator><creatorcontrib>Gargioli, Cesare ; Turturici, Giuseppina ; Barreca, Maria M. ; Spinello, Walter ; Fuoco, Claudia ; Testa, Stefano ; Feo, Salvatore ; Cannata, Stefano M. ; Cossu, Giulio ; Sconzo, Gabriella ; Geraci, Fabiana</creatorcontrib><description>Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-017-0012-9</identifier><identifier>PMID: 29298988</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Antibodies ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cell Cycle Checkpoints - drug effects ; Cell Differentiation ; Cell Line ; Cell migration ; Cell Movement - drug effects ; Cell proliferation ; Cell self-renewal ; Cell survival ; Cell Survival - drug effects ; Engraftment ; Gene expression ; Hydrogen Peroxide - pharmacology ; Immunology ; Integration ; Life Sciences ; Matrix Metalloproteinase 2 - genetics ; Matrix Metalloproteinase 2 - metabolism ; Mice ; Mice, SCID ; Muscle, Skeletal - cytology ; Muscular Dystrophy, Animal - therapy ; Oxidative stress ; Oxidative Stress - drug effects ; p38 Mitogen-Activated Protein Kinases - metabolism ; Protein Isoforms - metabolism ; Reactive Oxygen Species - metabolism ; Rodents ; Sarcoglycans - deficiency ; Sarcoglycans - genetics ; Skeletal muscle ; Stem Cell Transplantation ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - metabolism ; Transplantation</subject><ispartof>Cell death &amp; disease, 2018-01, Vol.9 (1), p.1-1, Article 1</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-55e9007dd550770ba3e41a7360da6a238ed35118c0c7ac442341e1e6aa2205ef3</citedby><cites>FETCH-LOGICAL-c400t-55e9007dd550770ba3e41a7360da6a238ed35118c0c7ac442341e1e6aa2205ef3</cites><orcidid>0000-0001-9734-1765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849040/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849040/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29298988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gargioli, Cesare</creatorcontrib><creatorcontrib>Turturici, Giuseppina</creatorcontrib><creatorcontrib>Barreca, Maria M.</creatorcontrib><creatorcontrib>Spinello, Walter</creatorcontrib><creatorcontrib>Fuoco, Claudia</creatorcontrib><creatorcontrib>Testa, Stefano</creatorcontrib><creatorcontrib>Feo, Salvatore</creatorcontrib><creatorcontrib>Cannata, Stefano M.</creatorcontrib><creatorcontrib>Cossu, Giulio</creatorcontrib><creatorcontrib>Sconzo, Gabriella</creatorcontrib><creatorcontrib>Geraci, Fabiana</creatorcontrib><title>Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell proliferation</subject><subject>Cell self-renewal</subject><subject>Cell survival</subject><subject>Cell Survival - drug effects</subject><subject>Engraftment</subject><subject>Gene expression</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Immunology</subject><subject>Integration</subject><subject>Life Sciences</subject><subject>Matrix Metalloproteinase 2 - genetics</subject><subject>Matrix Metalloproteinase 2 - metabolism</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscular Dystrophy, Animal - therapy</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Protein Isoforms - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><subject>Sarcoglycans - deficiency</subject><subject>Sarcoglycans - genetics</subject><subject>Skeletal muscle</subject><subject>Stem Cell Transplantation</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Transplantation</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kkFvFSEQgDdGY5vaH-DFkHjxsjqwsMteTExjq0mTXvRMeDBvS7MPVmBX-3_8obJubZ4mcmHIfHwwMFX1ksJbCo18lzjltK-BdjUAZXX_pDplwGnNpeyfHsUn1XlKd1BG0wAT7fPqhPWsl72Up9XPmx_O6uwWJClHTIlMEU3w1mUXvPMDCXtyCHNCMmF0i05mHnUkh_swoHem4L-DHGIiCUc0ORFN0rybwlTI1bIqDI5jIt9dvi1Z61J23uSCxaU4R6Lton3WAxLnyeJyDER7uy2W8KJ6ttdjwvOH-az6evnxy8Wn-vrm6vPFh-vacIBcC4E9QGetENB1sNMNcqq7pgWrW80aibYRlEoDptOGc9ZwihRbrRkDgfvmrHq_ead5d0Br0OeoRzVFd9DxXgXt1N8Z727VEBYlJO-BQxG8eRDE8G3GlNXBpbV07bG8oaK95J1gQvYFff0Pehfm6Et5K9VSyljbFYpulIkhpYj7x8tQUGsbqK0NVGkDtbaBWs2vjqt43PHn0wvANiCVlB8wHh39X-svbRTCVA</recordid><startdate>20180103</startdate><enddate>20180103</enddate><creator>Gargioli, Cesare</creator><creator>Turturici, Giuseppina</creator><creator>Barreca, Maria M.</creator><creator>Spinello, Walter</creator><creator>Fuoco, Claudia</creator><creator>Testa, Stefano</creator><creator>Feo, Salvatore</creator><creator>Cannata, Stefano M.</creator><creator>Cossu, Giulio</creator><creator>Sconzo, Gabriella</creator><creator>Geraci, Fabiana</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9734-1765</orcidid></search><sort><creationdate>20180103</creationdate><title>Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo</title><author>Gargioli, Cesare ; Turturici, Giuseppina ; Barreca, Maria M. ; Spinello, Walter ; Fuoco, Claudia ; Testa, Stefano ; Feo, Salvatore ; Cannata, Stefano M. ; Cossu, Giulio ; Sconzo, Gabriella ; Geraci, Fabiana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-55e9007dd550770ba3e41a7360da6a238ed35118c0c7ac442341e1e6aa2205ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell proliferation</topic><topic>Cell self-renewal</topic><topic>Cell survival</topic><topic>Cell Survival - drug effects</topic><topic>Engraftment</topic><topic>Gene expression</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Immunology</topic><topic>Integration</topic><topic>Life Sciences</topic><topic>Matrix Metalloproteinase 2 - genetics</topic><topic>Matrix Metalloproteinase 2 - metabolism</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscular Dystrophy, Animal - therapy</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Protein Isoforms - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><topic>Sarcoglycans - deficiency</topic><topic>Sarcoglycans - genetics</topic><topic>Skeletal muscle</topic><topic>Stem Cell Transplantation</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gargioli, Cesare</creatorcontrib><creatorcontrib>Turturici, Giuseppina</creatorcontrib><creatorcontrib>Barreca, Maria M.</creatorcontrib><creatorcontrib>Spinello, Walter</creatorcontrib><creatorcontrib>Fuoco, Claudia</creatorcontrib><creatorcontrib>Testa, Stefano</creatorcontrib><creatorcontrib>Feo, Salvatore</creatorcontrib><creatorcontrib>Cannata, Stefano M.</creatorcontrib><creatorcontrib>Cossu, Giulio</creatorcontrib><creatorcontrib>Sconzo, Gabriella</creatorcontrib><creatorcontrib>Geraci, Fabiana</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gargioli, Cesare</au><au>Turturici, Giuseppina</au><au>Barreca, Maria M.</au><au>Spinello, Walter</au><au>Fuoco, Claudia</au><au>Testa, Stefano</au><au>Feo, Salvatore</au><au>Cannata, Stefano M.</au><au>Cossu, Giulio</au><au>Sconzo, Gabriella</au><au>Geraci, Fabiana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2018-01-03</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><artnum>1</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29298988</pmid><doi>10.1038/s41419-017-0012-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9734-1765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2018-01, Vol.9 (1), p.1-1, Article 1
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5849040
source Nature Journals Open Access; PubMed Central (Open Access); Springer Open Access; MEDLINE; Elektronische Zeitschriftenbibliothek - Freely accessible e-journals; Directory of Open Access Journals (Open Access)
subjects Animals
Antibodies
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Culture
Cell Cycle Checkpoints - drug effects
Cell Differentiation
Cell Line
Cell migration
Cell Movement - drug effects
Cell proliferation
Cell self-renewal
Cell survival
Cell Survival - drug effects
Engraftment
Gene expression
Hydrogen Peroxide - pharmacology
Immunology
Integration
Life Sciences
Matrix Metalloproteinase 2 - genetics
Matrix Metalloproteinase 2 - metabolism
Mice
Mice, SCID
Muscle, Skeletal - cytology
Muscular Dystrophy, Animal - therapy
Oxidative stress
Oxidative Stress - drug effects
p38 Mitogen-Activated Protein Kinases - metabolism
Protein Isoforms - metabolism
Reactive Oxygen Species - metabolism
Rodents
Sarcoglycans - deficiency
Sarcoglycans - genetics
Skeletal muscle
Stem Cell Transplantation
Stem Cells - cytology
Stem Cells - drug effects
Stem Cells - metabolism
Transplantation
title Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20stress%20preconditioning%20of%20mouse%20perivascular%20myogenic%20progenitors%20selects%20a%20subpopulation%20of%20cells%20with%20a%20distinct%20survival%20advantage%20in%20vitro%20and%20in%20vivo&rft.jtitle=Cell%20death%20&%20disease&rft.au=Gargioli,%20Cesare&rft.date=2018-01-03&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.artnum=1&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-017-0012-9&rft_dat=%3Cproquest_pubme%3E1986112267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986112267&rft_id=info:pmid/29298988&rfr_iscdi=true