Proton range verification in homogeneous materials through acoustic measurements

Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2018-01, Vol.63 (2), p.025036-025036
Hauptverfasser: Nie, Wei, Jones, Kevin C, Petro, Scott, Kassaee, Alireza, Sehgal, Chandra M, Avery, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 025036
container_issue 2
container_start_page 025036
container_title Physics in medicine & biology
container_volume 63
creator Nie, Wei
Jones, Kevin C
Petro, Scott
Kassaee, Alireza
Sehgal, Chandra M
Avery, Stephen
description Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty   1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used.
doi_str_mv 10.1088/1361-6560/aa9c1f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5845813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966982217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-3594b3c34450e26d0c2f4f969641ca09e7c844d1023269b54fdb9aaf5e1661b23</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxa2Kqiy0956q3OiBsB5_bXyphFChlZDYAz2PHMfZNdrEwU5W4r_H26UrkMrJ0pvfvBm_IeQr0AugVTUHrqBUUtG5MdpC-4HMDtIRmVHKodQg5TE5SemBUoCKiU_kmGlQdLFQM7JcxjCGvoimX7li66JvvTWjz5Lvi3Xowsr1Lkyp6MyYq2aTinEdw7RaF8ZmffS26JxJU3Sd68f0mXxsM-S-vLyn5M_1z_urX-Xt3c3vq8vb0koOY8mlFjW3XAhJHVMNtawVrVZaCbCGarewlRANUMaZ0rUUbVNrY1rpQCmoGT8lP_a-w1R3rrF5djQbHKLvTHzCYDy-rfR-jauwRVkJWQHPBt9fDGJ4nFwasfPJus3G_P0vglZKV4zBIqN0j9oYUoquPYwBirtD4C513KWO-0Pklm-v1zs0_Es-A2d7wIcBH8IU-5wWDl2NiiNDyiTlCodmZ3X-H_Ldyc_UYqGu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966982217</pqid></control><display><type>article</type><title>Proton range verification in homogeneous materials through acoustic measurements</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Nie, Wei ; Jones, Kevin C ; Petro, Scott ; Kassaee, Alireza ; Sehgal, Chandra M ; Avery, Stephen</creator><creatorcontrib>Nie, Wei ; Jones, Kevin C ; Petro, Scott ; Kassaee, Alireza ; Sehgal, Chandra M ; Avery, Stephen</creatorcontrib><description>Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty   1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aa9c1f</identifier><identifier>PMID: 29160776</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Acoustics ; Bragg peak ; Humans ; Phantoms, Imaging ; protoacoustics ; proton radiation therapy ; proton range verification ; Protons ; quality assurance ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Signal-To-Noise Ratio ; thermal acoustics ; ultrasound</subject><ispartof>Physics in medicine &amp; biology, 2018-01, Vol.63 (2), p.025036-025036</ispartof><rights>2018 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-3594b3c34450e26d0c2f4f969641ca09e7c844d1023269b54fdb9aaf5e1661b23</citedby><cites>FETCH-LOGICAL-c531t-3594b3c34450e26d0c2f4f969641ca09e7c844d1023269b54fdb9aaf5e1661b23</cites><orcidid>0000-0002-8530-1931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aa9c1f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,781,785,886,27926,27927,53848,53895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29160776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Wei</creatorcontrib><creatorcontrib>Jones, Kevin C</creatorcontrib><creatorcontrib>Petro, Scott</creatorcontrib><creatorcontrib>Kassaee, Alireza</creatorcontrib><creatorcontrib>Sehgal, Chandra M</creatorcontrib><creatorcontrib>Avery, Stephen</creatorcontrib><title>Proton range verification in homogeneous materials through acoustic measurements</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty   1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used.</description><subject>Acoustics</subject><subject>Bragg peak</subject><subject>Humans</subject><subject>Phantoms, Imaging</subject><subject>protoacoustics</subject><subject>proton radiation therapy</subject><subject>proton range verification</subject><subject>Protons</subject><subject>quality assurance</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Signal-To-Noise Ratio</subject><subject>thermal acoustics</subject><subject>ultrasound</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1P3DAQxa2Kqiy0956q3OiBsB5_bXyphFChlZDYAz2PHMfZNdrEwU5W4r_H26UrkMrJ0pvfvBm_IeQr0AugVTUHrqBUUtG5MdpC-4HMDtIRmVHKodQg5TE5SemBUoCKiU_kmGlQdLFQM7JcxjCGvoimX7li66JvvTWjz5Lvi3Xowsr1Lkyp6MyYq2aTinEdw7RaF8ZmffS26JxJU3Sd68f0mXxsM-S-vLyn5M_1z_urX-Xt3c3vq8vb0koOY8mlFjW3XAhJHVMNtawVrVZaCbCGarewlRANUMaZ0rUUbVNrY1rpQCmoGT8lP_a-w1R3rrF5djQbHKLvTHzCYDy-rfR-jauwRVkJWQHPBt9fDGJ4nFwasfPJus3G_P0vglZKV4zBIqN0j9oYUoquPYwBirtD4C513KWO-0Pklm-v1zs0_Es-A2d7wIcBH8IU-5wWDl2NiiNDyiTlCodmZ3X-H_Ldyc_UYqGu</recordid><startdate>20180117</startdate><enddate>20180117</enddate><creator>Nie, Wei</creator><creator>Jones, Kevin C</creator><creator>Petro, Scott</creator><creator>Kassaee, Alireza</creator><creator>Sehgal, Chandra M</creator><creator>Avery, Stephen</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8530-1931</orcidid></search><sort><creationdate>20180117</creationdate><title>Proton range verification in homogeneous materials through acoustic measurements</title><author>Nie, Wei ; Jones, Kevin C ; Petro, Scott ; Kassaee, Alireza ; Sehgal, Chandra M ; Avery, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-3594b3c34450e26d0c2f4f969641ca09e7c844d1023269b54fdb9aaf5e1661b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Bragg peak</topic><topic>Humans</topic><topic>Phantoms, Imaging</topic><topic>protoacoustics</topic><topic>proton radiation therapy</topic><topic>proton range verification</topic><topic>Protons</topic><topic>quality assurance</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Signal-To-Noise Ratio</topic><topic>thermal acoustics</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Wei</creatorcontrib><creatorcontrib>Jones, Kevin C</creatorcontrib><creatorcontrib>Petro, Scott</creatorcontrib><creatorcontrib>Kassaee, Alireza</creatorcontrib><creatorcontrib>Sehgal, Chandra M</creatorcontrib><creatorcontrib>Avery, Stephen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Wei</au><au>Jones, Kevin C</au><au>Petro, Scott</au><au>Kassaee, Alireza</au><au>Sehgal, Chandra M</au><au>Avery, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton range verification in homogeneous materials through acoustic measurements</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2018-01-17</date><risdate>2018</risdate><volume>63</volume><issue>2</issue><spage>025036</spage><epage>025036</epage><pages>025036-025036</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty   1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29160776</pmid><doi>10.1088/1361-6560/aa9c1f</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8530-1931</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2018-01, Vol.63 (2), p.025036-025036
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5845813
source MEDLINE; Institute of Physics Journals
subjects Acoustics
Bragg peak
Humans
Phantoms, Imaging
protoacoustics
proton radiation therapy
proton range verification
Protons
quality assurance
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Signal-To-Noise Ratio
thermal acoustics
ultrasound
title Proton range verification in homogeneous materials through acoustic measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20range%20verification%20in%20homogeneous%20materials%20through%20acoustic%20measurements&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Nie,%20Wei&rft.date=2018-01-17&rft.volume=63&rft.issue=2&rft.spage=025036&rft.epage=025036&rft.pages=025036-025036&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aa9c1f&rft_dat=%3Cproquest_pubme%3E1966982217%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966982217&rft_id=info:pmid/29160776&rfr_iscdi=true