Proton range verification in homogeneous materials through acoustic measurements
Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2018-01, Vol.63 (2), p.025036-025036 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 025036 |
---|---|
container_issue | 2 |
container_start_page | 025036 |
container_title | Physics in medicine & biology |
container_volume | 63 |
creator | Nie, Wei Jones, Kevin C Petro, Scott Kassaee, Alireza Sehgal, Chandra M Avery, Stephen |
description | Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty 1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used. |
doi_str_mv | 10.1088/1361-6560/aa9c1f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5845813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966982217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-3594b3c34450e26d0c2f4f969641ca09e7c844d1023269b54fdb9aaf5e1661b23</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxa2Kqiy0956q3OiBsB5_bXyphFChlZDYAz2PHMfZNdrEwU5W4r_H26UrkMrJ0pvfvBm_IeQr0AugVTUHrqBUUtG5MdpC-4HMDtIRmVHKodQg5TE5SemBUoCKiU_kmGlQdLFQM7JcxjCGvoimX7li66JvvTWjz5Lvi3Xowsr1Lkyp6MyYq2aTinEdw7RaF8ZmffS26JxJU3Sd68f0mXxsM-S-vLyn5M_1z_urX-Xt3c3vq8vb0koOY8mlFjW3XAhJHVMNtawVrVZaCbCGarewlRANUMaZ0rUUbVNrY1rpQCmoGT8lP_a-w1R3rrF5djQbHKLvTHzCYDy-rfR-jauwRVkJWQHPBt9fDGJ4nFwasfPJus3G_P0vglZKV4zBIqN0j9oYUoquPYwBirtD4C513KWO-0Pklm-v1zs0_Es-A2d7wIcBH8IU-5wWDl2NiiNDyiTlCodmZ3X-H_Ldyc_UYqGu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966982217</pqid></control><display><type>article</type><title>Proton range verification in homogeneous materials through acoustic measurements</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Nie, Wei ; Jones, Kevin C ; Petro, Scott ; Kassaee, Alireza ; Sehgal, Chandra M ; Avery, Stephen</creator><creatorcontrib>Nie, Wei ; Jones, Kevin C ; Petro, Scott ; Kassaee, Alireza ; Sehgal, Chandra M ; Avery, Stephen</creatorcontrib><description>Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty 1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aa9c1f</identifier><identifier>PMID: 29160776</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Acoustics ; Bragg peak ; Humans ; Phantoms, Imaging ; protoacoustics ; proton radiation therapy ; proton range verification ; Protons ; quality assurance ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Signal-To-Noise Ratio ; thermal acoustics ; ultrasound</subject><ispartof>Physics in medicine & biology, 2018-01, Vol.63 (2), p.025036-025036</ispartof><rights>2018 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-3594b3c34450e26d0c2f4f969641ca09e7c844d1023269b54fdb9aaf5e1661b23</citedby><cites>FETCH-LOGICAL-c531t-3594b3c34450e26d0c2f4f969641ca09e7c844d1023269b54fdb9aaf5e1661b23</cites><orcidid>0000-0002-8530-1931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aa9c1f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,781,785,886,27926,27927,53848,53895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29160776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Wei</creatorcontrib><creatorcontrib>Jones, Kevin C</creatorcontrib><creatorcontrib>Petro, Scott</creatorcontrib><creatorcontrib>Kassaee, Alireza</creatorcontrib><creatorcontrib>Sehgal, Chandra M</creatorcontrib><creatorcontrib>Avery, Stephen</creatorcontrib><title>Proton range verification in homogeneous materials through acoustic measurements</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty 1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used.</description><subject>Acoustics</subject><subject>Bragg peak</subject><subject>Humans</subject><subject>Phantoms, Imaging</subject><subject>protoacoustics</subject><subject>proton radiation therapy</subject><subject>proton range verification</subject><subject>Protons</subject><subject>quality assurance</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Signal-To-Noise Ratio</subject><subject>thermal acoustics</subject><subject>ultrasound</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1P3DAQxa2Kqiy0956q3OiBsB5_bXyphFChlZDYAz2PHMfZNdrEwU5W4r_H26UrkMrJ0pvfvBm_IeQr0AugVTUHrqBUUtG5MdpC-4HMDtIRmVHKodQg5TE5SemBUoCKiU_kmGlQdLFQM7JcxjCGvoimX7li66JvvTWjz5Lvi3Xowsr1Lkyp6MyYq2aTinEdw7RaF8ZmffS26JxJU3Sd68f0mXxsM-S-vLyn5M_1z_urX-Xt3c3vq8vb0koOY8mlFjW3XAhJHVMNtawVrVZaCbCGarewlRANUMaZ0rUUbVNrY1rpQCmoGT8lP_a-w1R3rrF5djQbHKLvTHzCYDy-rfR-jauwRVkJWQHPBt9fDGJ4nFwasfPJus3G_P0vglZKV4zBIqN0j9oYUoquPYwBirtD4C513KWO-0Pklm-v1zs0_Es-A2d7wIcBH8IU-5wWDl2NiiNDyiTlCodmZ3X-H_Ldyc_UYqGu</recordid><startdate>20180117</startdate><enddate>20180117</enddate><creator>Nie, Wei</creator><creator>Jones, Kevin C</creator><creator>Petro, Scott</creator><creator>Kassaee, Alireza</creator><creator>Sehgal, Chandra M</creator><creator>Avery, Stephen</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8530-1931</orcidid></search><sort><creationdate>20180117</creationdate><title>Proton range verification in homogeneous materials through acoustic measurements</title><author>Nie, Wei ; Jones, Kevin C ; Petro, Scott ; Kassaee, Alireza ; Sehgal, Chandra M ; Avery, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-3594b3c34450e26d0c2f4f969641ca09e7c844d1023269b54fdb9aaf5e1661b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Bragg peak</topic><topic>Humans</topic><topic>Phantoms, Imaging</topic><topic>protoacoustics</topic><topic>proton radiation therapy</topic><topic>proton range verification</topic><topic>Protons</topic><topic>quality assurance</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Signal-To-Noise Ratio</topic><topic>thermal acoustics</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Wei</creatorcontrib><creatorcontrib>Jones, Kevin C</creatorcontrib><creatorcontrib>Petro, Scott</creatorcontrib><creatorcontrib>Kassaee, Alireza</creatorcontrib><creatorcontrib>Sehgal, Chandra M</creatorcontrib><creatorcontrib>Avery, Stephen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Wei</au><au>Jones, Kevin C</au><au>Petro, Scott</au><au>Kassaee, Alireza</au><au>Sehgal, Chandra M</au><au>Avery, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton range verification in homogeneous materials through acoustic measurements</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2018-01-17</date><risdate>2018</risdate><volume>63</volume><issue>2</issue><spage>025036</spage><epage>025036</epage><pages>025036-025036</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty 1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29160776</pmid><doi>10.1088/1361-6560/aa9c1f</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8530-1931</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2018-01, Vol.63 (2), p.025036-025036 |
issn | 0031-9155 1361-6560 1361-6560 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5845813 |
source | MEDLINE; Institute of Physics Journals |
subjects | Acoustics Bragg peak Humans Phantoms, Imaging protoacoustics proton radiation therapy proton range verification Protons quality assurance Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods Signal-To-Noise Ratio thermal acoustics ultrasound |
title | Proton range verification in homogeneous materials through acoustic measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20range%20verification%20in%20homogeneous%20materials%20through%20acoustic%20measurements&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Nie,%20Wei&rft.date=2018-01-17&rft.volume=63&rft.issue=2&rft.spage=025036&rft.epage=025036&rft.pages=025036-025036&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aa9c1f&rft_dat=%3Cproquest_pubme%3E1966982217%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966982217&rft_id=info:pmid/29160776&rfr_iscdi=true |