Revisiting the Role of the Male-Specific Lethal Complex in the Sex Determination Decision of Drosophila

(2010) observed strong female lethality but Erickson, using common alleles, did not. Since sex determination is dose-sensitive, Erickson also tested the heterozygous condition over balancers, and found no differences in female-lethal synergism between homozygous and heterozygous msl mothers. 3.Erick...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2018-03, Vol.208 (3), p.1275-1277
1. Verfasser: Horabin, Jamila I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1277
container_issue 3
container_start_page 1275
container_title Genetics (Austin)
container_volume 208
creator Horabin, Jamila I
description (2010) observed strong female lethality but Erickson, using common alleles, did not. Since sex determination is dose-sensitive, Erickson also tested the heterozygous condition over balancers, and found no differences in female-lethal synergism between homozygous and heterozygous msl mothers. 3.Erickson demonstrated that the original msl- 31 background has an additional mutation that strongly synergizes with mutations in the sex determination pathway. In an XSE doublemutant cross, it alone lowers female viability to 2.5%, more than ninefold lower than nonbalancer sisters (unpublished observation). [...]msl homozygous to heterozygous comparisons for dose-sensitive interactions with sex determination genes appear "negative," as the effects are masked by balancer lethality. Erickson questioned, "The model postulates that the MSL complex normally elevates expression of the XSEs twofold, effectively providing females with a 4X and males a 2X concentration of XSE proteins... how can it be that msl mutant females activate SxlPe and wild-type males do not, when both should have equivalent 2X levels of XSE proteins?" To answer: (1) not all X chromosome genes are dosage compensated, including some of the primary sex determination genes (e.g., runt; Gergen 1987; Smith et al 2001); (2) males have a Y chromosome that is a sink for chromatin proteins, particularly heterochromatin protein 1a (HP1), which is required for robust female SxlPe expression (Li etai 2011), so its presence will affect the ease by which males can activate the promoter; and (3) having two X chromosomes gives females the option of pairing them, which can affect gene expression.
doi_str_mv 10.1534/genetics.117.300635
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5844336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014473326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-fe88b8f47e31100adfe825105047b79d47083404487101eeb0adf3461502e703</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMofv8CQQreeNOZ9KRNeyPI_ISJML0PWXe6RdKkNtnQf2_mnKhXeXPynJdz8hJywuiA5cAvZmgx6NoPGBMDoLSAfIvss4pDmhXAtn_pPXLg_SuNTJWXu2Qvq3gpGK_2yWyMS-110HaWhDkmY2cwcc2XflQG0-cOa93oOhlhmCuTDF3bGXxPtP1inqO8xoB9q60K2tl4q6NhFNHlunfedXNt1BHZaZTxePx9HpKX25uX4X06erp7GF6N0hpKCGmDZTkpGy4QGKNUTWMhyxnNKRcTUU25oCVwylfjU4Y4WSHAC5bTDAWFQ3K5tu0WkxanNdrQKyO7Xreq_5BOafn3xeq5nLmlzEvOAYpocP5t0Lu3BfogW-1rNEZZdAsvM0qrjGV5ISJ69g99dYvexu0ixTgXANnKENZUHf_C99j8DMOoXOUoNznKmKNc5xi7Tn_v8dOzCQ4-AYsdmxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014473326</pqid></control><display><type>article</type><title>Revisiting the Role of the Male-Specific Lethal Complex in the Sex Determination Decision of Drosophila</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Horabin, Jamila I</creator><creatorcontrib>Horabin, Jamila I</creatorcontrib><description>(2010) observed strong female lethality but Erickson, using common alleles, did not. Since sex determination is dose-sensitive, Erickson also tested the heterozygous condition over balancers, and found no differences in female-lethal synergism between homozygous and heterozygous msl mothers. 3.Erickson demonstrated that the original msl- 31 background has an additional mutation that strongly synergizes with mutations in the sex determination pathway. In an XSE doublemutant cross, it alone lowers female viability to 2.5%, more than ninefold lower than nonbalancer sisters (unpublished observation). [...]msl homozygous to heterozygous comparisons for dose-sensitive interactions with sex determination genes appear "negative," as the effects are masked by balancer lethality. Erickson questioned, "The model postulates that the MSL complex normally elevates expression of the XSEs twofold, effectively providing females with a 4X and males a 2X concentration of XSE proteins... how can it be that msl mutant females activate SxlPe and wild-type males do not, when both should have equivalent 2X levels of XSE proteins?" To answer: (1) not all X chromosome genes are dosage compensated, including some of the primary sex determination genes (e.g., runt; Gergen 1987; Smith et al 2001); (2) males have a Y chromosome that is a sink for chromatin proteins, particularly heterochromatin protein 1a (HP1), which is required for robust female SxlPe expression (Li etai 2011), so its presence will affect the ease by which males can activate the promoter; and (3) having two X chromosomes gives females the option of pairing them, which can affect gene expression.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.117.300635</identifier><identifier>PMID: 29487149</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Animals ; Chromosomes ; Compensation ; Drosophila ; Drosophila - genetics ; Drosophila - metabolism ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Female ; Females ; Gene expression ; Genes, Lethal ; Genetics ; Insects ; Letter ; Male ; Males ; Mutation ; Proteins ; Sex determination ; Sex Determination Processes - genetics ; Sexes</subject><ispartof>Genetics (Austin), 2018-03, Vol.208 (3), p.1275-1277</ispartof><rights>Copyright Genetics Society of America Mar 2018</rights><rights>Copyright © 2018 by the Genetics Society of America 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c383t-fe88b8f47e31100adfe825105047b79d47083404487101eeb0adf3461502e703</cites><orcidid>0000-0002-3945-4945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27906,27907</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29487149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horabin, Jamila I</creatorcontrib><title>Revisiting the Role of the Male-Specific Lethal Complex in the Sex Determination Decision of Drosophila</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>(2010) observed strong female lethality but Erickson, using common alleles, did not. Since sex determination is dose-sensitive, Erickson also tested the heterozygous condition over balancers, and found no differences in female-lethal synergism between homozygous and heterozygous msl mothers. 3.Erickson demonstrated that the original msl- 31 background has an additional mutation that strongly synergizes with mutations in the sex determination pathway. In an XSE doublemutant cross, it alone lowers female viability to 2.5%, more than ninefold lower than nonbalancer sisters (unpublished observation). [...]msl homozygous to heterozygous comparisons for dose-sensitive interactions with sex determination genes appear "negative," as the effects are masked by balancer lethality. Erickson questioned, "The model postulates that the MSL complex normally elevates expression of the XSEs twofold, effectively providing females with a 4X and males a 2X concentration of XSE proteins... how can it be that msl mutant females activate SxlPe and wild-type males do not, when both should have equivalent 2X levels of XSE proteins?" To answer: (1) not all X chromosome genes are dosage compensated, including some of the primary sex determination genes (e.g., runt; Gergen 1987; Smith et al 2001); (2) males have a Y chromosome that is a sink for chromatin proteins, particularly heterochromatin protein 1a (HP1), which is required for robust female SxlPe expression (Li etai 2011), so its presence will affect the ease by which males can activate the promoter; and (3) having two X chromosomes gives females the option of pairing them, which can affect gene expression.</description><subject>Animals</subject><subject>Chromosomes</subject><subject>Compensation</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Female</subject><subject>Females</subject><subject>Gene expression</subject><subject>Genes, Lethal</subject><subject>Genetics</subject><subject>Insects</subject><subject>Letter</subject><subject>Male</subject><subject>Males</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Sex determination</subject><subject>Sex Determination Processes - genetics</subject><subject>Sexes</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkV1LwzAUhoMofv8CQQreeNOZ9KRNeyPI_ISJML0PWXe6RdKkNtnQf2_mnKhXeXPynJdz8hJywuiA5cAvZmgx6NoPGBMDoLSAfIvss4pDmhXAtn_pPXLg_SuNTJWXu2Qvq3gpGK_2yWyMS-110HaWhDkmY2cwcc2XflQG0-cOa93oOhlhmCuTDF3bGXxPtP1inqO8xoB9q60K2tl4q6NhFNHlunfedXNt1BHZaZTxePx9HpKX25uX4X06erp7GF6N0hpKCGmDZTkpGy4QGKNUTWMhyxnNKRcTUU25oCVwylfjU4Y4WSHAC5bTDAWFQ3K5tu0WkxanNdrQKyO7Xreq_5BOafn3xeq5nLmlzEvOAYpocP5t0Lu3BfogW-1rNEZZdAsvM0qrjGV5ISJ69g99dYvexu0ixTgXANnKENZUHf_C99j8DMOoXOUoNznKmKNc5xi7Tn_v8dOzCQ4-AYsdmxc</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Horabin, Jamila I</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3945-4945</orcidid></search><sort><creationdate>20180301</creationdate><title>Revisiting the Role of the Male-Specific Lethal Complex in the Sex Determination Decision of Drosophila</title><author>Horabin, Jamila I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-fe88b8f47e31100adfe825105047b79d47083404487101eeb0adf3461502e703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Chromosomes</topic><topic>Compensation</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Female</topic><topic>Females</topic><topic>Gene expression</topic><topic>Genes, Lethal</topic><topic>Genetics</topic><topic>Insects</topic><topic>Letter</topic><topic>Male</topic><topic>Males</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Sex determination</topic><topic>Sex Determination Processes - genetics</topic><topic>Sexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horabin, Jamila I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horabin, Jamila I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Role of the Male-Specific Lethal Complex in the Sex Determination Decision of Drosophila</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>208</volume><issue>3</issue><spage>1275</spage><epage>1277</epage><pages>1275-1277</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><abstract>(2010) observed strong female lethality but Erickson, using common alleles, did not. Since sex determination is dose-sensitive, Erickson also tested the heterozygous condition over balancers, and found no differences in female-lethal synergism between homozygous and heterozygous msl mothers. 3.Erickson demonstrated that the original msl- 31 background has an additional mutation that strongly synergizes with mutations in the sex determination pathway. In an XSE doublemutant cross, it alone lowers female viability to 2.5%, more than ninefold lower than nonbalancer sisters (unpublished observation). [...]msl homozygous to heterozygous comparisons for dose-sensitive interactions with sex determination genes appear "negative," as the effects are masked by balancer lethality. Erickson questioned, "The model postulates that the MSL complex normally elevates expression of the XSEs twofold, effectively providing females with a 4X and males a 2X concentration of XSE proteins... how can it be that msl mutant females activate SxlPe and wild-type males do not, when both should have equivalent 2X levels of XSE proteins?" To answer: (1) not all X chromosome genes are dosage compensated, including some of the primary sex determination genes (e.g., runt; Gergen 1987; Smith et al 2001); (2) males have a Y chromosome that is a sink for chromatin proteins, particularly heterochromatin protein 1a (HP1), which is required for robust female SxlPe expression (Li etai 2011), so its presence will affect the ease by which males can activate the promoter; and (3) having two X chromosomes gives females the option of pairing them, which can affect gene expression.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>29487149</pmid><doi>10.1534/genetics.117.300635</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-3945-4945</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2018-03, Vol.208 (3), p.1275-1277
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5844336
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Chromosomes
Compensation
Drosophila
Drosophila - genetics
Drosophila - metabolism
Drosophila melanogaster
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Female
Females
Gene expression
Genes, Lethal
Genetics
Insects
Letter
Male
Males
Mutation
Proteins
Sex determination
Sex Determination Processes - genetics
Sexes
title Revisiting the Role of the Male-Specific Lethal Complex in the Sex Determination Decision of Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Role%20of%20the%20Male-Specific%20Lethal%20Complex%20in%20the%20Sex%20Determination%20Decision%20of%20Drosophila&rft.jtitle=Genetics%20(Austin)&rft.au=Horabin,%20Jamila%20I&rft.date=2018-03-01&rft.volume=208&rft.issue=3&rft.spage=1275&rft.epage=1277&rft.pages=1275-1277&rft.issn=1943-2631&rft.eissn=1943-2631&rft_id=info:doi/10.1534/genetics.117.300635&rft_dat=%3Cproquest_pubme%3E2014473326%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014473326&rft_id=info:pmid/29487149&rfr_iscdi=true