The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects

This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology research & perspectives 2018-04, Vol.6 (2), p.e00327-n/a
Hauptverfasser: Caltabiano, Stephen, Mahar, Kelly M., Lister, Karyn, Tenero, David, Ravindranath, Ramiya, Cizman, Borut, Cobitz, Alexander R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e00327
container_title Pharmacology research & perspectives
container_volume 6
creator Caltabiano, Stephen
Mahar, Kelly M.
Lister, Karyn
Tenero, David
Ravindranath, Ramiya
Cizman, Borut
Cobitz, Alexander R.
description This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the effect of a weak CYP2C8 inhibitor, trimethoprim, as a perpetrator of a DDI with daprodustat. This was a two‐part study: Part A assessed the effect of coadministration of daprodustat on the pharmacokinetics of pioglitazone and rosuvastatin in 20 subjects; Part B assessed the coadministration of trimethoprim on the pharmacokinetics of daprodustat in 20 subjects. Coadministration of 100 mg of daprodustat with pioglitazone or rosuvastatin had no effect on the plasma exposures of either probe substrate. When trimethoprim was coadministered with 25‐mg daprodustat plasma daprodustat AUC and Cmax increased by 48% and 28%, respectively. Additionally, AUC and Cmax for the metabolite GSK2531401 were decreased by 32% and 40%, respectively. Cmax for the other metabolites was slightly decreased (~8–15%) but no changes in AUC were observed. As 100‐mg daprodustat exceeds the planned top therapeutic dose, interaction potential of daprodustat as a perpetrator with substrates of the CYP2C8 enzyme and OATP1B1 transporters is very low. Conversely, daprodustat exposure (AUC and Cmax) is likely to increase moderately with coadministration of weak CYP2C8 inhibitors.
doi_str_mv 10.1002/prp2.327
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014949275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4387-11e66308e15d62a270f77bdcc5033e049de09b51cd4870761ff606fefb18f2423</originalsourceid><addsrcrecordid>eNp1kd1qFTEUhQdRbKkFn0AC3njRqUkmPzM3gpT6AwWL1OuQSfacyWFOMiaZHo4P4HObobVWwasdyLdX1sqqqpcEnxOM6ds5zvS8ofJJdUwxpzWRWD59dD6qTlPaYowJYZg09Hl1RDvOeMfa4-rnzQjIxmWDnM8QtckueDSHDD47PaEwIKvnGOySss5oP4JHJmi7c96lsgAW7V0e0ezCZnJZ_wgezlAMabnV64bzZyhElKPbQR7DXGZ5CY2gpzweUFr6LZicXlTPBj0lOL2fJ9W3D5c3F5_qqy8fP1-8v6oNa1pZEwJCNLgFwq2gmko8SNlbYzhuGsCss4C7nhNjWVuSCzIMAosBhp60A2W0Oane3enOS78Da0rKqCe12tLxoIJ26u8b70a1CbeKt6yRXBSBN_cCMXxfIGW1c8nANGkPYUmKYsI61lHJC_r6H3QbluhLvELRRlIhKPkjaMqnpQjDgxmC1dqvWvtVpd-Cvnps_gH83WYB6jtg7yY4_FdIXX-9pqvgL2g3smk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023726621</pqid></control><display><type>article</type><title>The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Caltabiano, Stephen ; Mahar, Kelly M. ; Lister, Karyn ; Tenero, David ; Ravindranath, Ramiya ; Cizman, Borut ; Cobitz, Alexander R.</creator><creatorcontrib>Caltabiano, Stephen ; Mahar, Kelly M. ; Lister, Karyn ; Tenero, David ; Ravindranath, Ramiya ; Cizman, Borut ; Cobitz, Alexander R.</creatorcontrib><description>This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the effect of a weak CYP2C8 inhibitor, trimethoprim, as a perpetrator of a DDI with daprodustat. This was a two‐part study: Part A assessed the effect of coadministration of daprodustat on the pharmacokinetics of pioglitazone and rosuvastatin in 20 subjects; Part B assessed the coadministration of trimethoprim on the pharmacokinetics of daprodustat in 20 subjects. Coadministration of 100 mg of daprodustat with pioglitazone or rosuvastatin had no effect on the plasma exposures of either probe substrate. When trimethoprim was coadministered with 25‐mg daprodustat plasma daprodustat AUC and Cmax increased by 48% and 28%, respectively. Additionally, AUC and Cmax for the metabolite GSK2531401 were decreased by 32% and 40%, respectively. Cmax for the other metabolites was slightly decreased (~8–15%) but no changes in AUC were observed. As 100‐mg daprodustat exceeds the planned top therapeutic dose, interaction potential of daprodustat as a perpetrator with substrates of the CYP2C8 enzyme and OATP1B1 transporters is very low. Conversely, daprodustat exposure (AUC and Cmax) is likely to increase moderately with coadministration of weak CYP2C8 inhibitors.</description><identifier>ISSN: 2052-1707</identifier><identifier>EISSN: 2052-1707</identifier><identifier>DOI: 10.1002/prp2.327</identifier><identifier>PMID: 29545948</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject><![CDATA[Administration, Oral ; Anemia ; Antibiotics ; Barbiturates - administration & dosage ; Barbiturates - blood ; Barbiturates - pharmacology ; Body mass index ; Cell adhesion & migration ; Chronic kidney disease ; Clinical medicine ; Cross-Over Studies ; Cytochrome ; Cytochrome P-450 CYP2C8 - metabolism ; Drug dosages ; drug interaction ; Drug Interactions ; Enzymes ; Family medical history ; Female ; Females ; Glycine - administration & dosage ; Glycine - analogs & derivatives ; Glycine - blood ; Glycine - pharmacology ; Healthy Volunteers ; Hemodialysis ; Hemoglobin ; Humans ; Hypoxia ; Kidney diseases ; Male ; Metabolism ; Metabolites ; Motility ; Original ; Pharmacology ; phase I ; Rosuvastatin Calcium - administration & dosage ; Rosuvastatin Calcium - blood ; Solute Carrier Organic Anion Transporter Family Member 1b1 - metabolism ; Studies ; Substrate Specificity ; Thiazolidinediones - administration & dosage ; Thiazolidinediones - blood ; Trimethoprim - administration & dosage ; Trimethoprim - blood ; Trimethoprim - pharmacology]]></subject><ispartof>Pharmacology research &amp; perspectives, 2018-04, Vol.6 (2), p.e00327-n/a</ispartof><rights>2018 The Authors. published by John Wiley &amp; Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4387-11e66308e15d62a270f77bdcc5033e049de09b51cd4870761ff606fefb18f2423</citedby><cites>FETCH-LOGICAL-c4387-11e66308e15d62a270f77bdcc5033e049de09b51cd4870761ff606fefb18f2423</cites><orcidid>0000-0001-7176-1526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843756/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843756/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29545948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caltabiano, Stephen</creatorcontrib><creatorcontrib>Mahar, Kelly M.</creatorcontrib><creatorcontrib>Lister, Karyn</creatorcontrib><creatorcontrib>Tenero, David</creatorcontrib><creatorcontrib>Ravindranath, Ramiya</creatorcontrib><creatorcontrib>Cizman, Borut</creatorcontrib><creatorcontrib>Cobitz, Alexander R.</creatorcontrib><title>The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects</title><title>Pharmacology research &amp; perspectives</title><addtitle>Pharmacol Res Perspect</addtitle><description>This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the effect of a weak CYP2C8 inhibitor, trimethoprim, as a perpetrator of a DDI with daprodustat. This was a two‐part study: Part A assessed the effect of coadministration of daprodustat on the pharmacokinetics of pioglitazone and rosuvastatin in 20 subjects; Part B assessed the coadministration of trimethoprim on the pharmacokinetics of daprodustat in 20 subjects. Coadministration of 100 mg of daprodustat with pioglitazone or rosuvastatin had no effect on the plasma exposures of either probe substrate. When trimethoprim was coadministered with 25‐mg daprodustat plasma daprodustat AUC and Cmax increased by 48% and 28%, respectively. Additionally, AUC and Cmax for the metabolite GSK2531401 were decreased by 32% and 40%, respectively. Cmax for the other metabolites was slightly decreased (~8–15%) but no changes in AUC were observed. As 100‐mg daprodustat exceeds the planned top therapeutic dose, interaction potential of daprodustat as a perpetrator with substrates of the CYP2C8 enzyme and OATP1B1 transporters is very low. Conversely, daprodustat exposure (AUC and Cmax) is likely to increase moderately with coadministration of weak CYP2C8 inhibitors.</description><subject>Administration, Oral</subject><subject>Anemia</subject><subject>Antibiotics</subject><subject>Barbiturates - administration &amp; dosage</subject><subject>Barbiturates - blood</subject><subject>Barbiturates - pharmacology</subject><subject>Body mass index</subject><subject>Cell adhesion &amp; migration</subject><subject>Chronic kidney disease</subject><subject>Clinical medicine</subject><subject>Cross-Over Studies</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 CYP2C8 - metabolism</subject><subject>Drug dosages</subject><subject>drug interaction</subject><subject>Drug Interactions</subject><subject>Enzymes</subject><subject>Family medical history</subject><subject>Female</subject><subject>Females</subject><subject>Glycine - administration &amp; dosage</subject><subject>Glycine - analogs &amp; derivatives</subject><subject>Glycine - blood</subject><subject>Glycine - pharmacology</subject><subject>Healthy Volunteers</subject><subject>Hemodialysis</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Kidney diseases</subject><subject>Male</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Motility</subject><subject>Original</subject><subject>Pharmacology</subject><subject>phase I</subject><subject>Rosuvastatin Calcium - administration &amp; dosage</subject><subject>Rosuvastatin Calcium - blood</subject><subject>Solute Carrier Organic Anion Transporter Family Member 1b1 - metabolism</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Thiazolidinediones - administration &amp; dosage</subject><subject>Thiazolidinediones - blood</subject><subject>Trimethoprim - administration &amp; dosage</subject><subject>Trimethoprim - blood</subject><subject>Trimethoprim - pharmacology</subject><issn>2052-1707</issn><issn>2052-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kd1qFTEUhQdRbKkFn0AC3njRqUkmPzM3gpT6AwWL1OuQSfacyWFOMiaZHo4P4HObobVWwasdyLdX1sqqqpcEnxOM6ds5zvS8ofJJdUwxpzWRWD59dD6qTlPaYowJYZg09Hl1RDvOeMfa4-rnzQjIxmWDnM8QtckueDSHDD47PaEwIKvnGOySss5oP4JHJmi7c96lsgAW7V0e0ezCZnJZ_wgezlAMabnV64bzZyhElKPbQR7DXGZ5CY2gpzweUFr6LZicXlTPBj0lOL2fJ9W3D5c3F5_qqy8fP1-8v6oNa1pZEwJCNLgFwq2gmko8SNlbYzhuGsCss4C7nhNjWVuSCzIMAosBhp60A2W0Oane3enOS78Da0rKqCe12tLxoIJ26u8b70a1CbeKt6yRXBSBN_cCMXxfIGW1c8nANGkPYUmKYsI61lHJC_r6H3QbluhLvELRRlIhKPkjaMqnpQjDgxmC1dqvWvtVpd-Cvnps_gH83WYB6jtg7yY4_FdIXX-9pqvgL2g3smk</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Caltabiano, Stephen</creator><creator>Mahar, Kelly M.</creator><creator>Lister, Karyn</creator><creator>Tenero, David</creator><creator>Ravindranath, Ramiya</creator><creator>Cizman, Borut</creator><creator>Cobitz, Alexander R.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7176-1526</orcidid></search><sort><creationdate>201804</creationdate><title>The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects</title><author>Caltabiano, Stephen ; Mahar, Kelly M. ; Lister, Karyn ; Tenero, David ; Ravindranath, Ramiya ; Cizman, Borut ; Cobitz, Alexander R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4387-11e66308e15d62a270f77bdcc5033e049de09b51cd4870761ff606fefb18f2423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Administration, Oral</topic><topic>Anemia</topic><topic>Antibiotics</topic><topic>Barbiturates - administration &amp; dosage</topic><topic>Barbiturates - blood</topic><topic>Barbiturates - pharmacology</topic><topic>Body mass index</topic><topic>Cell adhesion &amp; migration</topic><topic>Chronic kidney disease</topic><topic>Clinical medicine</topic><topic>Cross-Over Studies</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 CYP2C8 - metabolism</topic><topic>Drug dosages</topic><topic>drug interaction</topic><topic>Drug Interactions</topic><topic>Enzymes</topic><topic>Family medical history</topic><topic>Female</topic><topic>Females</topic><topic>Glycine - administration &amp; dosage</topic><topic>Glycine - analogs &amp; derivatives</topic><topic>Glycine - blood</topic><topic>Glycine - pharmacology</topic><topic>Healthy Volunteers</topic><topic>Hemodialysis</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Kidney diseases</topic><topic>Male</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Motility</topic><topic>Original</topic><topic>Pharmacology</topic><topic>phase I</topic><topic>Rosuvastatin Calcium - administration &amp; dosage</topic><topic>Rosuvastatin Calcium - blood</topic><topic>Solute Carrier Organic Anion Transporter Family Member 1b1 - metabolism</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Thiazolidinediones - administration &amp; dosage</topic><topic>Thiazolidinediones - blood</topic><topic>Trimethoprim - administration &amp; dosage</topic><topic>Trimethoprim - blood</topic><topic>Trimethoprim - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caltabiano, Stephen</creatorcontrib><creatorcontrib>Mahar, Kelly M.</creatorcontrib><creatorcontrib>Lister, Karyn</creatorcontrib><creatorcontrib>Tenero, David</creatorcontrib><creatorcontrib>Ravindranath, Ramiya</creatorcontrib><creatorcontrib>Cizman, Borut</creatorcontrib><creatorcontrib>Cobitz, Alexander R.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pharmacology research &amp; perspectives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caltabiano, Stephen</au><au>Mahar, Kelly M.</au><au>Lister, Karyn</au><au>Tenero, David</au><au>Ravindranath, Ramiya</au><au>Cizman, Borut</au><au>Cobitz, Alexander R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects</atitle><jtitle>Pharmacology research &amp; perspectives</jtitle><addtitle>Pharmacol Res Perspect</addtitle><date>2018-04</date><risdate>2018</risdate><volume>6</volume><issue>2</issue><spage>e00327</spage><epage>n/a</epage><pages>e00327-n/a</pages><issn>2052-1707</issn><eissn>2052-1707</eissn><abstract>This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the effect of a weak CYP2C8 inhibitor, trimethoprim, as a perpetrator of a DDI with daprodustat. This was a two‐part study: Part A assessed the effect of coadministration of daprodustat on the pharmacokinetics of pioglitazone and rosuvastatin in 20 subjects; Part B assessed the coadministration of trimethoprim on the pharmacokinetics of daprodustat in 20 subjects. Coadministration of 100 mg of daprodustat with pioglitazone or rosuvastatin had no effect on the plasma exposures of either probe substrate. When trimethoprim was coadministered with 25‐mg daprodustat plasma daprodustat AUC and Cmax increased by 48% and 28%, respectively. Additionally, AUC and Cmax for the metabolite GSK2531401 were decreased by 32% and 40%, respectively. Cmax for the other metabolites was slightly decreased (~8–15%) but no changes in AUC were observed. As 100‐mg daprodustat exceeds the planned top therapeutic dose, interaction potential of daprodustat as a perpetrator with substrates of the CYP2C8 enzyme and OATP1B1 transporters is very low. Conversely, daprodustat exposure (AUC and Cmax) is likely to increase moderately with coadministration of weak CYP2C8 inhibitors.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29545948</pmid><doi>10.1002/prp2.327</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7176-1526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-1707
ispartof Pharmacology research & perspectives, 2018-04, Vol.6 (2), p.e00327-n/a
issn 2052-1707
2052-1707
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843756
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Administration, Oral
Anemia
Antibiotics
Barbiturates - administration & dosage
Barbiturates - blood
Barbiturates - pharmacology
Body mass index
Cell adhesion & migration
Chronic kidney disease
Clinical medicine
Cross-Over Studies
Cytochrome
Cytochrome P-450 CYP2C8 - metabolism
Drug dosages
drug interaction
Drug Interactions
Enzymes
Family medical history
Female
Females
Glycine - administration & dosage
Glycine - analogs & derivatives
Glycine - blood
Glycine - pharmacology
Healthy Volunteers
Hemodialysis
Hemoglobin
Humans
Hypoxia
Kidney diseases
Male
Metabolism
Metabolites
Motility
Original
Pharmacology
phase I
Rosuvastatin Calcium - administration & dosage
Rosuvastatin Calcium - blood
Solute Carrier Organic Anion Transporter Family Member 1b1 - metabolism
Studies
Substrate Specificity
Thiazolidinediones - administration & dosage
Thiazolidinediones - blood
Trimethoprim - administration & dosage
Trimethoprim - blood
Trimethoprim - pharmacology
title The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20drug%20interaction%20potential%20of%20daprodustat%20when%20coadministered%20with%20pioglitazone,%20rosuvastatin,%20or%20trimethoprim%20in%20healthy%20subjects&rft.jtitle=Pharmacology%20research%20&%20perspectives&rft.au=Caltabiano,%20Stephen&rft.date=2018-04&rft.volume=6&rft.issue=2&rft.spage=e00327&rft.epage=n/a&rft.pages=e00327-n/a&rft.issn=2052-1707&rft.eissn=2052-1707&rft_id=info:doi/10.1002/prp2.327&rft_dat=%3Cproquest_pubme%3E2014949275%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023726621&rft_id=info:pmid/29545948&rfr_iscdi=true