The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects
This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the...
Gespeichert in:
Veröffentlicht in: | Pharmacology research & perspectives 2018-04, Vol.6 (2), p.e00327-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e00327 |
container_title | Pharmacology research & perspectives |
container_volume | 6 |
creator | Caltabiano, Stephen Mahar, Kelly M. Lister, Karyn Tenero, David Ravindranath, Ramiya Cizman, Borut Cobitz, Alexander R. |
description | This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the effect of a weak CYP2C8 inhibitor, trimethoprim, as a perpetrator of a DDI with daprodustat.
This was a two‐part study: Part A assessed the effect of coadministration of daprodustat on the pharmacokinetics of pioglitazone and rosuvastatin in 20 subjects; Part B assessed the coadministration of trimethoprim on the pharmacokinetics of daprodustat in 20 subjects.
Coadministration of 100 mg of daprodustat with pioglitazone or rosuvastatin had no effect on the plasma exposures of either probe substrate. When trimethoprim was coadministered with 25‐mg daprodustat plasma daprodustat AUC and Cmax increased by 48% and 28%, respectively. Additionally, AUC and Cmax for the metabolite GSK2531401 were decreased by 32% and 40%, respectively. Cmax for the other metabolites was slightly decreased (~8–15%) but no changes in AUC were observed.
As 100‐mg daprodustat exceeds the planned top therapeutic dose, interaction potential of daprodustat as a perpetrator with substrates of the CYP2C8 enzyme and OATP1B1 transporters is very low. Conversely, daprodustat exposure (AUC and Cmax) is likely to increase moderately with coadministration of weak CYP2C8 inhibitors. |
doi_str_mv | 10.1002/prp2.327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014949275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4387-11e66308e15d62a270f77bdcc5033e049de09b51cd4870761ff606fefb18f2423</originalsourceid><addsrcrecordid>eNp1kd1qFTEUhQdRbKkFn0AC3njRqUkmPzM3gpT6AwWL1OuQSfacyWFOMiaZHo4P4HObobVWwasdyLdX1sqqqpcEnxOM6ds5zvS8ofJJdUwxpzWRWD59dD6qTlPaYowJYZg09Hl1RDvOeMfa4-rnzQjIxmWDnM8QtckueDSHDD47PaEwIKvnGOySss5oP4JHJmi7c96lsgAW7V0e0ezCZnJZ_wgezlAMabnV64bzZyhElKPbQR7DXGZ5CY2gpzweUFr6LZicXlTPBj0lOL2fJ9W3D5c3F5_qqy8fP1-8v6oNa1pZEwJCNLgFwq2gmko8SNlbYzhuGsCss4C7nhNjWVuSCzIMAosBhp60A2W0Oane3enOS78Da0rKqCe12tLxoIJ26u8b70a1CbeKt6yRXBSBN_cCMXxfIGW1c8nANGkPYUmKYsI61lHJC_r6H3QbluhLvELRRlIhKPkjaMqnpQjDgxmC1dqvWvtVpd-Cvnps_gH83WYB6jtg7yY4_FdIXX-9pqvgL2g3smk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023726621</pqid></control><display><type>article</type><title>The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Caltabiano, Stephen ; Mahar, Kelly M. ; Lister, Karyn ; Tenero, David ; Ravindranath, Ramiya ; Cizman, Borut ; Cobitz, Alexander R.</creator><creatorcontrib>Caltabiano, Stephen ; Mahar, Kelly M. ; Lister, Karyn ; Tenero, David ; Ravindranath, Ramiya ; Cizman, Borut ; Cobitz, Alexander R.</creatorcontrib><description>This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the effect of a weak CYP2C8 inhibitor, trimethoprim, as a perpetrator of a DDI with daprodustat.
This was a two‐part study: Part A assessed the effect of coadministration of daprodustat on the pharmacokinetics of pioglitazone and rosuvastatin in 20 subjects; Part B assessed the coadministration of trimethoprim on the pharmacokinetics of daprodustat in 20 subjects.
Coadministration of 100 mg of daprodustat with pioglitazone or rosuvastatin had no effect on the plasma exposures of either probe substrate. When trimethoprim was coadministered with 25‐mg daprodustat plasma daprodustat AUC and Cmax increased by 48% and 28%, respectively. Additionally, AUC and Cmax for the metabolite GSK2531401 were decreased by 32% and 40%, respectively. Cmax for the other metabolites was slightly decreased (~8–15%) but no changes in AUC were observed.
As 100‐mg daprodustat exceeds the planned top therapeutic dose, interaction potential of daprodustat as a perpetrator with substrates of the CYP2C8 enzyme and OATP1B1 transporters is very low. Conversely, daprodustat exposure (AUC and Cmax) is likely to increase moderately with coadministration of weak CYP2C8 inhibitors.</description><identifier>ISSN: 2052-1707</identifier><identifier>EISSN: 2052-1707</identifier><identifier>DOI: 10.1002/prp2.327</identifier><identifier>PMID: 29545948</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject><![CDATA[Administration, Oral ; Anemia ; Antibiotics ; Barbiturates - administration & dosage ; Barbiturates - blood ; Barbiturates - pharmacology ; Body mass index ; Cell adhesion & migration ; Chronic kidney disease ; Clinical medicine ; Cross-Over Studies ; Cytochrome ; Cytochrome P-450 CYP2C8 - metabolism ; Drug dosages ; drug interaction ; Drug Interactions ; Enzymes ; Family medical history ; Female ; Females ; Glycine - administration & dosage ; Glycine - analogs & derivatives ; Glycine - blood ; Glycine - pharmacology ; Healthy Volunteers ; Hemodialysis ; Hemoglobin ; Humans ; Hypoxia ; Kidney diseases ; Male ; Metabolism ; Metabolites ; Motility ; Original ; Pharmacology ; phase I ; Rosuvastatin Calcium - administration & dosage ; Rosuvastatin Calcium - blood ; Solute Carrier Organic Anion Transporter Family Member 1b1 - metabolism ; Studies ; Substrate Specificity ; Thiazolidinediones - administration & dosage ; Thiazolidinediones - blood ; Trimethoprim - administration & dosage ; Trimethoprim - blood ; Trimethoprim - pharmacology]]></subject><ispartof>Pharmacology research & perspectives, 2018-04, Vol.6 (2), p.e00327-n/a</ispartof><rights>2018 The Authors. published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4387-11e66308e15d62a270f77bdcc5033e049de09b51cd4870761ff606fefb18f2423</citedby><cites>FETCH-LOGICAL-c4387-11e66308e15d62a270f77bdcc5033e049de09b51cd4870761ff606fefb18f2423</cites><orcidid>0000-0001-7176-1526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843756/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843756/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29545948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caltabiano, Stephen</creatorcontrib><creatorcontrib>Mahar, Kelly M.</creatorcontrib><creatorcontrib>Lister, Karyn</creatorcontrib><creatorcontrib>Tenero, David</creatorcontrib><creatorcontrib>Ravindranath, Ramiya</creatorcontrib><creatorcontrib>Cizman, Borut</creatorcontrib><creatorcontrib>Cobitz, Alexander R.</creatorcontrib><title>The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects</title><title>Pharmacology research & perspectives</title><addtitle>Pharmacol Res Perspect</addtitle><description>This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the effect of a weak CYP2C8 inhibitor, trimethoprim, as a perpetrator of a DDI with daprodustat.
This was a two‐part study: Part A assessed the effect of coadministration of daprodustat on the pharmacokinetics of pioglitazone and rosuvastatin in 20 subjects; Part B assessed the coadministration of trimethoprim on the pharmacokinetics of daprodustat in 20 subjects.
Coadministration of 100 mg of daprodustat with pioglitazone or rosuvastatin had no effect on the plasma exposures of either probe substrate. When trimethoprim was coadministered with 25‐mg daprodustat plasma daprodustat AUC and Cmax increased by 48% and 28%, respectively. Additionally, AUC and Cmax for the metabolite GSK2531401 were decreased by 32% and 40%, respectively. Cmax for the other metabolites was slightly decreased (~8–15%) but no changes in AUC were observed.
As 100‐mg daprodustat exceeds the planned top therapeutic dose, interaction potential of daprodustat as a perpetrator with substrates of the CYP2C8 enzyme and OATP1B1 transporters is very low. Conversely, daprodustat exposure (AUC and Cmax) is likely to increase moderately with coadministration of weak CYP2C8 inhibitors.</description><subject>Administration, Oral</subject><subject>Anemia</subject><subject>Antibiotics</subject><subject>Barbiturates - administration & dosage</subject><subject>Barbiturates - blood</subject><subject>Barbiturates - pharmacology</subject><subject>Body mass index</subject><subject>Cell adhesion & migration</subject><subject>Chronic kidney disease</subject><subject>Clinical medicine</subject><subject>Cross-Over Studies</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 CYP2C8 - metabolism</subject><subject>Drug dosages</subject><subject>drug interaction</subject><subject>Drug Interactions</subject><subject>Enzymes</subject><subject>Family medical history</subject><subject>Female</subject><subject>Females</subject><subject>Glycine - administration & dosage</subject><subject>Glycine - analogs & derivatives</subject><subject>Glycine - blood</subject><subject>Glycine - pharmacology</subject><subject>Healthy Volunteers</subject><subject>Hemodialysis</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Kidney diseases</subject><subject>Male</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Motility</subject><subject>Original</subject><subject>Pharmacology</subject><subject>phase I</subject><subject>Rosuvastatin Calcium - administration & dosage</subject><subject>Rosuvastatin Calcium - blood</subject><subject>Solute Carrier Organic Anion Transporter Family Member 1b1 - metabolism</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Thiazolidinediones - administration & dosage</subject><subject>Thiazolidinediones - blood</subject><subject>Trimethoprim - administration & dosage</subject><subject>Trimethoprim - blood</subject><subject>Trimethoprim - pharmacology</subject><issn>2052-1707</issn><issn>2052-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kd1qFTEUhQdRbKkFn0AC3njRqUkmPzM3gpT6AwWL1OuQSfacyWFOMiaZHo4P4HObobVWwasdyLdX1sqqqpcEnxOM6ds5zvS8ofJJdUwxpzWRWD59dD6qTlPaYowJYZg09Hl1RDvOeMfa4-rnzQjIxmWDnM8QtckueDSHDD47PaEwIKvnGOySss5oP4JHJmi7c96lsgAW7V0e0ezCZnJZ_wgezlAMabnV64bzZyhElKPbQR7DXGZ5CY2gpzweUFr6LZicXlTPBj0lOL2fJ9W3D5c3F5_qqy8fP1-8v6oNa1pZEwJCNLgFwq2gmko8SNlbYzhuGsCss4C7nhNjWVuSCzIMAosBhp60A2W0Oane3enOS78Da0rKqCe12tLxoIJ26u8b70a1CbeKt6yRXBSBN_cCMXxfIGW1c8nANGkPYUmKYsI61lHJC_r6H3QbluhLvELRRlIhKPkjaMqnpQjDgxmC1dqvWvtVpd-Cvnps_gH83WYB6jtg7yY4_FdIXX-9pqvgL2g3smk</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Caltabiano, Stephen</creator><creator>Mahar, Kelly M.</creator><creator>Lister, Karyn</creator><creator>Tenero, David</creator><creator>Ravindranath, Ramiya</creator><creator>Cizman, Borut</creator><creator>Cobitz, Alexander R.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7176-1526</orcidid></search><sort><creationdate>201804</creationdate><title>The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects</title><author>Caltabiano, Stephen ; Mahar, Kelly M. ; Lister, Karyn ; Tenero, David ; Ravindranath, Ramiya ; Cizman, Borut ; Cobitz, Alexander R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4387-11e66308e15d62a270f77bdcc5033e049de09b51cd4870761ff606fefb18f2423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Administration, Oral</topic><topic>Anemia</topic><topic>Antibiotics</topic><topic>Barbiturates - administration & dosage</topic><topic>Barbiturates - blood</topic><topic>Barbiturates - pharmacology</topic><topic>Body mass index</topic><topic>Cell adhesion & migration</topic><topic>Chronic kidney disease</topic><topic>Clinical medicine</topic><topic>Cross-Over Studies</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 CYP2C8 - metabolism</topic><topic>Drug dosages</topic><topic>drug interaction</topic><topic>Drug Interactions</topic><topic>Enzymes</topic><topic>Family medical history</topic><topic>Female</topic><topic>Females</topic><topic>Glycine - administration & dosage</topic><topic>Glycine - analogs & derivatives</topic><topic>Glycine - blood</topic><topic>Glycine - pharmacology</topic><topic>Healthy Volunteers</topic><topic>Hemodialysis</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Kidney diseases</topic><topic>Male</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Motility</topic><topic>Original</topic><topic>Pharmacology</topic><topic>phase I</topic><topic>Rosuvastatin Calcium - administration & dosage</topic><topic>Rosuvastatin Calcium - blood</topic><topic>Solute Carrier Organic Anion Transporter Family Member 1b1 - metabolism</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Thiazolidinediones - administration & dosage</topic><topic>Thiazolidinediones - blood</topic><topic>Trimethoprim - administration & dosage</topic><topic>Trimethoprim - blood</topic><topic>Trimethoprim - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caltabiano, Stephen</creatorcontrib><creatorcontrib>Mahar, Kelly M.</creatorcontrib><creatorcontrib>Lister, Karyn</creatorcontrib><creatorcontrib>Tenero, David</creatorcontrib><creatorcontrib>Ravindranath, Ramiya</creatorcontrib><creatorcontrib>Cizman, Borut</creatorcontrib><creatorcontrib>Cobitz, Alexander R.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pharmacology research & perspectives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caltabiano, Stephen</au><au>Mahar, Kelly M.</au><au>Lister, Karyn</au><au>Tenero, David</au><au>Ravindranath, Ramiya</au><au>Cizman, Borut</au><au>Cobitz, Alexander R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects</atitle><jtitle>Pharmacology research & perspectives</jtitle><addtitle>Pharmacol Res Perspect</addtitle><date>2018-04</date><risdate>2018</risdate><volume>6</volume><issue>2</issue><spage>e00327</spage><epage>n/a</epage><pages>e00327-n/a</pages><issn>2052-1707</issn><eissn>2052-1707</eissn><abstract>This study was conducted to evaluate the likelihood of daprodustat to act as a perpetrator in drug–drug interactions (DDI) with the CYP2C8 enzyme and OATP1B1 transporter using the probe substrates pioglitazone and rosuvastatin as potential victims, respectively. Additionally, this study assessed the effect of a weak CYP2C8 inhibitor, trimethoprim, as a perpetrator of a DDI with daprodustat.
This was a two‐part study: Part A assessed the effect of coadministration of daprodustat on the pharmacokinetics of pioglitazone and rosuvastatin in 20 subjects; Part B assessed the coadministration of trimethoprim on the pharmacokinetics of daprodustat in 20 subjects.
Coadministration of 100 mg of daprodustat with pioglitazone or rosuvastatin had no effect on the plasma exposures of either probe substrate. When trimethoprim was coadministered with 25‐mg daprodustat plasma daprodustat AUC and Cmax increased by 48% and 28%, respectively. Additionally, AUC and Cmax for the metabolite GSK2531401 were decreased by 32% and 40%, respectively. Cmax for the other metabolites was slightly decreased (~8–15%) but no changes in AUC were observed.
As 100‐mg daprodustat exceeds the planned top therapeutic dose, interaction potential of daprodustat as a perpetrator with substrates of the CYP2C8 enzyme and OATP1B1 transporters is very low. Conversely, daprodustat exposure (AUC and Cmax) is likely to increase moderately with coadministration of weak CYP2C8 inhibitors.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>29545948</pmid><doi>10.1002/prp2.327</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7176-1526</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1707 |
ispartof | Pharmacology research & perspectives, 2018-04, Vol.6 (2), p.e00327-n/a |
issn | 2052-1707 2052-1707 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843756 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | Administration, Oral Anemia Antibiotics Barbiturates - administration & dosage Barbiturates - blood Barbiturates - pharmacology Body mass index Cell adhesion & migration Chronic kidney disease Clinical medicine Cross-Over Studies Cytochrome Cytochrome P-450 CYP2C8 - metabolism Drug dosages drug interaction Drug Interactions Enzymes Family medical history Female Females Glycine - administration & dosage Glycine - analogs & derivatives Glycine - blood Glycine - pharmacology Healthy Volunteers Hemodialysis Hemoglobin Humans Hypoxia Kidney diseases Male Metabolism Metabolites Motility Original Pharmacology phase I Rosuvastatin Calcium - administration & dosage Rosuvastatin Calcium - blood Solute Carrier Organic Anion Transporter Family Member 1b1 - metabolism Studies Substrate Specificity Thiazolidinediones - administration & dosage Thiazolidinediones - blood Trimethoprim - administration & dosage Trimethoprim - blood Trimethoprim - pharmacology |
title | The drug interaction potential of daprodustat when coadministered with pioglitazone, rosuvastatin, or trimethoprim in healthy subjects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20drug%20interaction%20potential%20of%20daprodustat%20when%20coadministered%20with%20pioglitazone,%20rosuvastatin,%20or%20trimethoprim%20in%20healthy%20subjects&rft.jtitle=Pharmacology%20research%20&%20perspectives&rft.au=Caltabiano,%20Stephen&rft.date=2018-04&rft.volume=6&rft.issue=2&rft.spage=e00327&rft.epage=n/a&rft.pages=e00327-n/a&rft.issn=2052-1707&rft.eissn=2052-1707&rft_id=info:doi/10.1002/prp2.327&rft_dat=%3Cproquest_pubme%3E2014949275%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023726621&rft_id=info:pmid/29545948&rfr_iscdi=true |