Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1
Summary Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known...
Gespeichert in:
Veröffentlicht in: | Clinical and experimental immunology 2018-04, Vol.192 (1), p.54-67 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 1 |
container_start_page | 54 |
container_title | Clinical and experimental immunology |
container_volume | 192 |
creator | Hoeres, T. Wilhelm, M. Smetak, M. Holzmann, E. Schulze‐Tanzil, G. Birkmann, J. |
description | Summary
Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known to inhibit osteoclast activity and bone resorption, but also have immunomodulatory and anti‐tumour effects. These properties have been linked previously to the down‐regulation of VEGF and interference with tumour neo‐angiogenesis. It was therefore surprising to find that treatment with Zol in combination with low‐dose interleukin (IL)‐2 increased serum VEGF levels in cancer patients. In this study we aimed to characterize the effect of Zol and IL‐2 on VEGF signalling of blood‐derived immune cells in vitro. Upon stimulation with IL‐2, T cells and natural killer (NK) cells increase production of VEGF consecutively to the release of proinflammatory interferon (IFN)‐γ, and Zol accelerates this response specifically in γδ T cells. VEGF can, in turn, be antagonized by soluble VEGF receptor (sVEGFR)‐1, which is released depending on stimulatory conditions and the presence of monocytes. Additionally, malignant cells represented by leukaemia and lymphoma cell lines produce VEGF and some release sVEGFR‐1 simultaneously. Our findings indicate a mechanism by which the VEGF and the sVEGFR‐1 production by immune cells regulates local VEGF signalling. Therefore, immunotherapeutic interventions may enable both pro‐ as well as anti‐tumour effects via immune cell‐mediated alterations of VEGF homeostasis.
Stimulation induces VEGF production but also the release of sVEGFR‐1 by immune cells, which sequesters free VEGF and inhibit angiogenesis. Depending on the process of lymphocyte ‐ monocyte interaction, VEGF signaling is predominantly influenced in either way. Immune cells regulate VEGF homeostasis locally in a time dependent manner, influenced by the type and strength of primary stimuli and co‐stimulation. |
doi_str_mv | 10.1111/cei.13090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5842402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011567114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4690-cfdd64976a73be9a9cc4b719964dcc05eb085339cb49e4682aca52171b687cff3</originalsourceid><addsrcrecordid>eNp1kdFKHDEYhUOp6Hb1oi9QBnpjL0aTTJLZ3AiyrLogeNN6GzKZf6aRzGSbzCje-Qh9xj5Js51VrGAghJ_z5XD4D0KfCT4h6ZwasCekwBJ_QDNSCJ5TyuRHNMMYy1wSzA7Qpxjv0iiEoPvogEpacCz5DNXrrht7yAw4F7MA7ej0ANnt6vIii7bttXO2b7N7q5PoQEfIfDPJuq_THXTrexsHa7Lo3Vi53ecABjaDD3-efpNDtNdoF-Fo987Rj4vV9-VVfn1zuV6eX-eGCYlz09S1YLIUuiwqkFoaw6qSSClYbQzmUOEFLwppKiaBiQXVRnNKSlKJRWmappijs8l3M1Yd1Ab6IWinNsF2Ojwqr636X-ntT9X6e8UXjDJMk8HxziD4XyPEQXU2bleje_BjVCSFY4yUgif06xv0zo8h7SsqignhoiSEJerbRJngYwzQvIQhWG27U6k79a-7xH55nf6FfC4rAacT8GAdPL7vpJar9WT5FwTHo9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011567114</pqid></control><display><type>article</type><title>Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hoeres, T. ; Wilhelm, M. ; Smetak, M. ; Holzmann, E. ; Schulze‐Tanzil, G. ; Birkmann, J.</creator><creatorcontrib>Hoeres, T. ; Wilhelm, M. ; Smetak, M. ; Holzmann, E. ; Schulze‐Tanzil, G. ; Birkmann, J.</creatorcontrib><description>Summary
Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known to inhibit osteoclast activity and bone resorption, but also have immunomodulatory and anti‐tumour effects. These properties have been linked previously to the down‐regulation of VEGF and interference with tumour neo‐angiogenesis. It was therefore surprising to find that treatment with Zol in combination with low‐dose interleukin (IL)‐2 increased serum VEGF levels in cancer patients. In this study we aimed to characterize the effect of Zol and IL‐2 on VEGF signalling of blood‐derived immune cells in vitro. Upon stimulation with IL‐2, T cells and natural killer (NK) cells increase production of VEGF consecutively to the release of proinflammatory interferon (IFN)‐γ, and Zol accelerates this response specifically in γδ T cells. VEGF can, in turn, be antagonized by soluble VEGF receptor (sVEGFR)‐1, which is released depending on stimulatory conditions and the presence of monocytes. Additionally, malignant cells represented by leukaemia and lymphoma cell lines produce VEGF and some release sVEGFR‐1 simultaneously. Our findings indicate a mechanism by which the VEGF and the sVEGFR‐1 production by immune cells regulates local VEGF signalling. Therefore, immunotherapeutic interventions may enable both pro‐ as well as anti‐tumour effects via immune cell‐mediated alterations of VEGF homeostasis.
Stimulation induces VEGF production but also the release of sVEGFR‐1 by immune cells, which sequesters free VEGF and inhibit angiogenesis. Depending on the process of lymphocyte ‐ monocyte interaction, VEGF signaling is predominantly influenced in either way. Immune cells regulate VEGF homeostasis locally in a time dependent manner, influenced by the type and strength of primary stimuli and co‐stimulation.</description><identifier>ISSN: 0009-9104</identifier><identifier>EISSN: 1365-2249</identifier><identifier>DOI: 10.1111/cei.13090</identifier><identifier>PMID: 29235095</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Angiogenesis ; Bone resorption ; Cancer ; Cell lines ; Homeostasis ; Immunomodulation ; Immunosuppressive agents ; Inflammation ; Interferon ; interleukin‐2 ; Leukemia ; Lymphocytes ; Lymphocytes T ; Lymphoma ; monocyte ; Monocytes ; Natural killer cells ; Original ; Physiological effects ; soluble VEGF receptor ; Stromal cells ; Tumor cell lines ; Tumor microenvironment ; Tumors ; Vascular endothelial growth factor ; VEGF ; Zoledronic acid</subject><ispartof>Clinical and experimental immunology, 2018-04, Vol.192 (1), p.54-67</ispartof><rights>2017 British Society for Immunology</rights><rights>2017 British Society for Immunology.</rights><rights>2018 British Society for Immunology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4690-cfdd64976a73be9a9cc4b719964dcc05eb085339cb49e4682aca52171b687cff3</citedby><cites>FETCH-LOGICAL-c4690-cfdd64976a73be9a9cc4b719964dcc05eb085339cb49e4682aca52171b687cff3</cites><orcidid>0000-0002-9494-0292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842402/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842402/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29235095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoeres, T.</creatorcontrib><creatorcontrib>Wilhelm, M.</creatorcontrib><creatorcontrib>Smetak, M.</creatorcontrib><creatorcontrib>Holzmann, E.</creatorcontrib><creatorcontrib>Schulze‐Tanzil, G.</creatorcontrib><creatorcontrib>Birkmann, J.</creatorcontrib><title>Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1</title><title>Clinical and experimental immunology</title><addtitle>Clin Exp Immunol</addtitle><description>Summary
Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known to inhibit osteoclast activity and bone resorption, but also have immunomodulatory and anti‐tumour effects. These properties have been linked previously to the down‐regulation of VEGF and interference with tumour neo‐angiogenesis. It was therefore surprising to find that treatment with Zol in combination with low‐dose interleukin (IL)‐2 increased serum VEGF levels in cancer patients. In this study we aimed to characterize the effect of Zol and IL‐2 on VEGF signalling of blood‐derived immune cells in vitro. Upon stimulation with IL‐2, T cells and natural killer (NK) cells increase production of VEGF consecutively to the release of proinflammatory interferon (IFN)‐γ, and Zol accelerates this response specifically in γδ T cells. VEGF can, in turn, be antagonized by soluble VEGF receptor (sVEGFR)‐1, which is released depending on stimulatory conditions and the presence of monocytes. Additionally, malignant cells represented by leukaemia and lymphoma cell lines produce VEGF and some release sVEGFR‐1 simultaneously. Our findings indicate a mechanism by which the VEGF and the sVEGFR‐1 production by immune cells regulates local VEGF signalling. Therefore, immunotherapeutic interventions may enable both pro‐ as well as anti‐tumour effects via immune cell‐mediated alterations of VEGF homeostasis.
Stimulation induces VEGF production but also the release of sVEGFR‐1 by immune cells, which sequesters free VEGF and inhibit angiogenesis. Depending on the process of lymphocyte ‐ monocyte interaction, VEGF signaling is predominantly influenced in either way. Immune cells regulate VEGF homeostasis locally in a time dependent manner, influenced by the type and strength of primary stimuli and co‐stimulation.</description><subject>Angiogenesis</subject><subject>Bone resorption</subject><subject>Cancer</subject><subject>Cell lines</subject><subject>Homeostasis</subject><subject>Immunomodulation</subject><subject>Immunosuppressive agents</subject><subject>Inflammation</subject><subject>Interferon</subject><subject>interleukin‐2</subject><subject>Leukemia</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>monocyte</subject><subject>Monocytes</subject><subject>Natural killer cells</subject><subject>Original</subject><subject>Physiological effects</subject><subject>soluble VEGF receptor</subject><subject>Stromal cells</subject><subject>Tumor cell lines</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>VEGF</subject><subject>Zoledronic acid</subject><issn>0009-9104</issn><issn>1365-2249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kdFKHDEYhUOp6Hb1oi9QBnpjL0aTTJLZ3AiyrLogeNN6GzKZf6aRzGSbzCje-Qh9xj5Js51VrGAghJ_z5XD4D0KfCT4h6ZwasCekwBJ_QDNSCJ5TyuRHNMMYy1wSzA7Qpxjv0iiEoPvogEpacCz5DNXrrht7yAw4F7MA7ej0ANnt6vIii7bttXO2b7N7q5PoQEfIfDPJuq_THXTrexsHa7Lo3Vi53ecABjaDD3-efpNDtNdoF-Fo987Rj4vV9-VVfn1zuV6eX-eGCYlz09S1YLIUuiwqkFoaw6qSSClYbQzmUOEFLwppKiaBiQXVRnNKSlKJRWmappijs8l3M1Yd1Ab6IWinNsF2Ojwqr636X-ntT9X6e8UXjDJMk8HxziD4XyPEQXU2bleje_BjVCSFY4yUgif06xv0zo8h7SsqignhoiSEJerbRJngYwzQvIQhWG27U6k79a-7xH55nf6FfC4rAacT8GAdPL7vpJar9WT5FwTHo9U</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Hoeres, T.</creator><creator>Wilhelm, M.</creator><creator>Smetak, M.</creator><creator>Holzmann, E.</creator><creator>Schulze‐Tanzil, G.</creator><creator>Birkmann, J.</creator><general>Oxford University Press</general><general>John Wiley and Sons Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9494-0292</orcidid></search><sort><creationdate>201804</creationdate><title>Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1</title><author>Hoeres, T. ; Wilhelm, M. ; Smetak, M. ; Holzmann, E. ; Schulze‐Tanzil, G. ; Birkmann, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4690-cfdd64976a73be9a9cc4b719964dcc05eb085339cb49e4682aca52171b687cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angiogenesis</topic><topic>Bone resorption</topic><topic>Cancer</topic><topic>Cell lines</topic><topic>Homeostasis</topic><topic>Immunomodulation</topic><topic>Immunosuppressive agents</topic><topic>Inflammation</topic><topic>Interferon</topic><topic>interleukin‐2</topic><topic>Leukemia</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>monocyte</topic><topic>Monocytes</topic><topic>Natural killer cells</topic><topic>Original</topic><topic>Physiological effects</topic><topic>soluble VEGF receptor</topic><topic>Stromal cells</topic><topic>Tumor cell lines</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>VEGF</topic><topic>Zoledronic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoeres, T.</creatorcontrib><creatorcontrib>Wilhelm, M.</creatorcontrib><creatorcontrib>Smetak, M.</creatorcontrib><creatorcontrib>Holzmann, E.</creatorcontrib><creatorcontrib>Schulze‐Tanzil, G.</creatorcontrib><creatorcontrib>Birkmann, J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical and experimental immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoeres, T.</au><au>Wilhelm, M.</au><au>Smetak, M.</au><au>Holzmann, E.</au><au>Schulze‐Tanzil, G.</au><au>Birkmann, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1</atitle><jtitle>Clinical and experimental immunology</jtitle><addtitle>Clin Exp Immunol</addtitle><date>2018-04</date><risdate>2018</risdate><volume>192</volume><issue>1</issue><spage>54</spage><epage>67</epage><pages>54-67</pages><issn>0009-9104</issn><eissn>1365-2249</eissn><abstract>Summary
Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known to inhibit osteoclast activity and bone resorption, but also have immunomodulatory and anti‐tumour effects. These properties have been linked previously to the down‐regulation of VEGF and interference with tumour neo‐angiogenesis. It was therefore surprising to find that treatment with Zol in combination with low‐dose interleukin (IL)‐2 increased serum VEGF levels in cancer patients. In this study we aimed to characterize the effect of Zol and IL‐2 on VEGF signalling of blood‐derived immune cells in vitro. Upon stimulation with IL‐2, T cells and natural killer (NK) cells increase production of VEGF consecutively to the release of proinflammatory interferon (IFN)‐γ, and Zol accelerates this response specifically in γδ T cells. VEGF can, in turn, be antagonized by soluble VEGF receptor (sVEGFR)‐1, which is released depending on stimulatory conditions and the presence of monocytes. Additionally, malignant cells represented by leukaemia and lymphoma cell lines produce VEGF and some release sVEGFR‐1 simultaneously. Our findings indicate a mechanism by which the VEGF and the sVEGFR‐1 production by immune cells regulates local VEGF signalling. Therefore, immunotherapeutic interventions may enable both pro‐ as well as anti‐tumour effects via immune cell‐mediated alterations of VEGF homeostasis.
Stimulation induces VEGF production but also the release of sVEGFR‐1 by immune cells, which sequesters free VEGF and inhibit angiogenesis. Depending on the process of lymphocyte ‐ monocyte interaction, VEGF signaling is predominantly influenced in either way. Immune cells regulate VEGF homeostasis locally in a time dependent manner, influenced by the type and strength of primary stimuli and co‐stimulation.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29235095</pmid><doi>10.1111/cei.13090</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9494-0292</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9104 |
ispartof | Clinical and experimental immunology, 2018-04, Vol.192 (1), p.54-67 |
issn | 0009-9104 1365-2249 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5842402 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central; Alma/SFX Local Collection |
subjects | Angiogenesis Bone resorption Cancer Cell lines Homeostasis Immunomodulation Immunosuppressive agents Inflammation Interferon interleukin‐2 Leukemia Lymphocytes Lymphocytes T Lymphoma monocyte Monocytes Natural killer cells Original Physiological effects soluble VEGF receptor Stromal cells Tumor cell lines Tumor microenvironment Tumors Vascular endothelial growth factor VEGF Zoledronic acid |
title | Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immune%20cells%20regulate%20VEGF%20signalling%20via%20release%20of%20VEGF%20and%20antagonistic%20soluble%20VEGF%20receptor%E2%80%901&rft.jtitle=Clinical%20and%20experimental%20immunology&rft.au=Hoeres,%20T.&rft.date=2018-04&rft.volume=192&rft.issue=1&rft.spage=54&rft.epage=67&rft.pages=54-67&rft.issn=0009-9104&rft.eissn=1365-2249&rft_id=info:doi/10.1111/cei.13090&rft_dat=%3Cproquest_pubme%3E2011567114%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011567114&rft_id=info:pmid/29235095&rfr_iscdi=true |