Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1

Summary Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental immunology 2018-04, Vol.192 (1), p.54-67
Hauptverfasser: Hoeres, T., Wilhelm, M., Smetak, M., Holzmann, E., Schulze‐Tanzil, G., Birkmann, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 1
container_start_page 54
container_title Clinical and experimental immunology
container_volume 192
creator Hoeres, T.
Wilhelm, M.
Smetak, M.
Holzmann, E.
Schulze‐Tanzil, G.
Birkmann, J.
description Summary Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known to inhibit osteoclast activity and bone resorption, but also have immunomodulatory and anti‐tumour effects. These properties have been linked previously to the down‐regulation of VEGF and interference with tumour neo‐angiogenesis. It was therefore surprising to find that treatment with Zol in combination with low‐dose interleukin (IL)‐2 increased serum VEGF levels in cancer patients. In this study we aimed to characterize the effect of Zol and IL‐2 on VEGF signalling of blood‐derived immune cells in vitro. Upon stimulation with IL‐2, T cells and natural killer (NK) cells increase production of VEGF consecutively to the release of proinflammatory interferon (IFN)‐γ, and Zol accelerates this response specifically in γδ T cells. VEGF can, in turn, be antagonized by soluble VEGF receptor (sVEGFR)‐1, which is released depending on stimulatory conditions and the presence of monocytes. Additionally, malignant cells represented by leukaemia and lymphoma cell lines produce VEGF and some release sVEGFR‐1 simultaneously. Our findings indicate a mechanism by which the VEGF and the sVEGFR‐1 production by immune cells regulates local VEGF signalling. Therefore, immunotherapeutic interventions may enable both pro‐ as well as anti‐tumour effects via immune cell‐mediated alterations of VEGF homeostasis. Stimulation induces VEGF production but also the release of sVEGFR‐1 by immune cells, which sequesters free VEGF and inhibit angiogenesis. Depending on the process of lymphocyte ‐ monocyte interaction, VEGF signaling is predominantly influenced in either way. Immune cells regulate VEGF homeostasis locally in a time dependent manner, influenced by the type and strength of primary stimuli and co‐stimulation.
doi_str_mv 10.1111/cei.13090
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5842402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011567114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4690-cfdd64976a73be9a9cc4b719964dcc05eb085339cb49e4682aca52171b687cff3</originalsourceid><addsrcrecordid>eNp1kdFKHDEYhUOp6Hb1oi9QBnpjL0aTTJLZ3AiyrLogeNN6GzKZf6aRzGSbzCje-Qh9xj5Js51VrGAghJ_z5XD4D0KfCT4h6ZwasCekwBJ_QDNSCJ5TyuRHNMMYy1wSzA7Qpxjv0iiEoPvogEpacCz5DNXrrht7yAw4F7MA7ej0ANnt6vIii7bttXO2b7N7q5PoQEfIfDPJuq_THXTrexsHa7Lo3Vi53ecABjaDD3-efpNDtNdoF-Fo987Rj4vV9-VVfn1zuV6eX-eGCYlz09S1YLIUuiwqkFoaw6qSSClYbQzmUOEFLwppKiaBiQXVRnNKSlKJRWmappijs8l3M1Yd1Ab6IWinNsF2Ojwqr636X-ntT9X6e8UXjDJMk8HxziD4XyPEQXU2bleje_BjVCSFY4yUgif06xv0zo8h7SsqignhoiSEJerbRJngYwzQvIQhWG27U6k79a-7xH55nf6FfC4rAacT8GAdPL7vpJar9WT5FwTHo9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011567114</pqid></control><display><type>article</type><title>Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hoeres, T. ; Wilhelm, M. ; Smetak, M. ; Holzmann, E. ; Schulze‐Tanzil, G. ; Birkmann, J.</creator><creatorcontrib>Hoeres, T. ; Wilhelm, M. ; Smetak, M. ; Holzmann, E. ; Schulze‐Tanzil, G. ; Birkmann, J.</creatorcontrib><description>Summary Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known to inhibit osteoclast activity and bone resorption, but also have immunomodulatory and anti‐tumour effects. These properties have been linked previously to the down‐regulation of VEGF and interference with tumour neo‐angiogenesis. It was therefore surprising to find that treatment with Zol in combination with low‐dose interleukin (IL)‐2 increased serum VEGF levels in cancer patients. In this study we aimed to characterize the effect of Zol and IL‐2 on VEGF signalling of blood‐derived immune cells in vitro. Upon stimulation with IL‐2, T cells and natural killer (NK) cells increase production of VEGF consecutively to the release of proinflammatory interferon (IFN)‐γ, and Zol accelerates this response specifically in γδ T cells. VEGF can, in turn, be antagonized by soluble VEGF receptor (sVEGFR)‐1, which is released depending on stimulatory conditions and the presence of monocytes. Additionally, malignant cells represented by leukaemia and lymphoma cell lines produce VEGF and some release sVEGFR‐1 simultaneously. Our findings indicate a mechanism by which the VEGF and the sVEGFR‐1 production by immune cells regulates local VEGF signalling. Therefore, immunotherapeutic interventions may enable both pro‐ as well as anti‐tumour effects via immune cell‐mediated alterations of VEGF homeostasis. Stimulation induces VEGF production but also the release of sVEGFR‐1 by immune cells, which sequesters free VEGF and inhibit angiogenesis. Depending on the process of lymphocyte ‐ monocyte interaction, VEGF signaling is predominantly influenced in either way. Immune cells regulate VEGF homeostasis locally in a time dependent manner, influenced by the type and strength of primary stimuli and co‐stimulation.</description><identifier>ISSN: 0009-9104</identifier><identifier>EISSN: 1365-2249</identifier><identifier>DOI: 10.1111/cei.13090</identifier><identifier>PMID: 29235095</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Angiogenesis ; Bone resorption ; Cancer ; Cell lines ; Homeostasis ; Immunomodulation ; Immunosuppressive agents ; Inflammation ; Interferon ; interleukin‐2 ; Leukemia ; Lymphocytes ; Lymphocytes T ; Lymphoma ; monocyte ; Monocytes ; Natural killer cells ; Original ; Physiological effects ; soluble VEGF receptor ; Stromal cells ; Tumor cell lines ; Tumor microenvironment ; Tumors ; Vascular endothelial growth factor ; VEGF ; Zoledronic acid</subject><ispartof>Clinical and experimental immunology, 2018-04, Vol.192 (1), p.54-67</ispartof><rights>2017 British Society for Immunology</rights><rights>2017 British Society for Immunology.</rights><rights>2018 British Society for Immunology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4690-cfdd64976a73be9a9cc4b719964dcc05eb085339cb49e4682aca52171b687cff3</citedby><cites>FETCH-LOGICAL-c4690-cfdd64976a73be9a9cc4b719964dcc05eb085339cb49e4682aca52171b687cff3</cites><orcidid>0000-0002-9494-0292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842402/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842402/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29235095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoeres, T.</creatorcontrib><creatorcontrib>Wilhelm, M.</creatorcontrib><creatorcontrib>Smetak, M.</creatorcontrib><creatorcontrib>Holzmann, E.</creatorcontrib><creatorcontrib>Schulze‐Tanzil, G.</creatorcontrib><creatorcontrib>Birkmann, J.</creatorcontrib><title>Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1</title><title>Clinical and experimental immunology</title><addtitle>Clin Exp Immunol</addtitle><description>Summary Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known to inhibit osteoclast activity and bone resorption, but also have immunomodulatory and anti‐tumour effects. These properties have been linked previously to the down‐regulation of VEGF and interference with tumour neo‐angiogenesis. It was therefore surprising to find that treatment with Zol in combination with low‐dose interleukin (IL)‐2 increased serum VEGF levels in cancer patients. In this study we aimed to characterize the effect of Zol and IL‐2 on VEGF signalling of blood‐derived immune cells in vitro. Upon stimulation with IL‐2, T cells and natural killer (NK) cells increase production of VEGF consecutively to the release of proinflammatory interferon (IFN)‐γ, and Zol accelerates this response specifically in γδ T cells. VEGF can, in turn, be antagonized by soluble VEGF receptor (sVEGFR)‐1, which is released depending on stimulatory conditions and the presence of monocytes. Additionally, malignant cells represented by leukaemia and lymphoma cell lines produce VEGF and some release sVEGFR‐1 simultaneously. Our findings indicate a mechanism by which the VEGF and the sVEGFR‐1 production by immune cells regulates local VEGF signalling. Therefore, immunotherapeutic interventions may enable both pro‐ as well as anti‐tumour effects via immune cell‐mediated alterations of VEGF homeostasis. Stimulation induces VEGF production but also the release of sVEGFR‐1 by immune cells, which sequesters free VEGF and inhibit angiogenesis. Depending on the process of lymphocyte ‐ monocyte interaction, VEGF signaling is predominantly influenced in either way. Immune cells regulate VEGF homeostasis locally in a time dependent manner, influenced by the type and strength of primary stimuli and co‐stimulation.</description><subject>Angiogenesis</subject><subject>Bone resorption</subject><subject>Cancer</subject><subject>Cell lines</subject><subject>Homeostasis</subject><subject>Immunomodulation</subject><subject>Immunosuppressive agents</subject><subject>Inflammation</subject><subject>Interferon</subject><subject>interleukin‐2</subject><subject>Leukemia</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphoma</subject><subject>monocyte</subject><subject>Monocytes</subject><subject>Natural killer cells</subject><subject>Original</subject><subject>Physiological effects</subject><subject>soluble VEGF receptor</subject><subject>Stromal cells</subject><subject>Tumor cell lines</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>VEGF</subject><subject>Zoledronic acid</subject><issn>0009-9104</issn><issn>1365-2249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kdFKHDEYhUOp6Hb1oi9QBnpjL0aTTJLZ3AiyrLogeNN6GzKZf6aRzGSbzCje-Qh9xj5Js51VrGAghJ_z5XD4D0KfCT4h6ZwasCekwBJ_QDNSCJ5TyuRHNMMYy1wSzA7Qpxjv0iiEoPvogEpacCz5DNXrrht7yAw4F7MA7ej0ANnt6vIii7bttXO2b7N7q5PoQEfIfDPJuq_THXTrexsHa7Lo3Vi53ecABjaDD3-efpNDtNdoF-Fo987Rj4vV9-VVfn1zuV6eX-eGCYlz09S1YLIUuiwqkFoaw6qSSClYbQzmUOEFLwppKiaBiQXVRnNKSlKJRWmappijs8l3M1Yd1Ab6IWinNsF2Ojwqr636X-ntT9X6e8UXjDJMk8HxziD4XyPEQXU2bleje_BjVCSFY4yUgif06xv0zo8h7SsqignhoiSEJerbRJngYwzQvIQhWG27U6k79a-7xH55nf6FfC4rAacT8GAdPL7vpJar9WT5FwTHo9U</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Hoeres, T.</creator><creator>Wilhelm, M.</creator><creator>Smetak, M.</creator><creator>Holzmann, E.</creator><creator>Schulze‐Tanzil, G.</creator><creator>Birkmann, J.</creator><general>Oxford University Press</general><general>John Wiley and Sons Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9494-0292</orcidid></search><sort><creationdate>201804</creationdate><title>Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1</title><author>Hoeres, T. ; Wilhelm, M. ; Smetak, M. ; Holzmann, E. ; Schulze‐Tanzil, G. ; Birkmann, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4690-cfdd64976a73be9a9cc4b719964dcc05eb085339cb49e4682aca52171b687cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angiogenesis</topic><topic>Bone resorption</topic><topic>Cancer</topic><topic>Cell lines</topic><topic>Homeostasis</topic><topic>Immunomodulation</topic><topic>Immunosuppressive agents</topic><topic>Inflammation</topic><topic>Interferon</topic><topic>interleukin‐2</topic><topic>Leukemia</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphoma</topic><topic>monocyte</topic><topic>Monocytes</topic><topic>Natural killer cells</topic><topic>Original</topic><topic>Physiological effects</topic><topic>soluble VEGF receptor</topic><topic>Stromal cells</topic><topic>Tumor cell lines</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>VEGF</topic><topic>Zoledronic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoeres, T.</creatorcontrib><creatorcontrib>Wilhelm, M.</creatorcontrib><creatorcontrib>Smetak, M.</creatorcontrib><creatorcontrib>Holzmann, E.</creatorcontrib><creatorcontrib>Schulze‐Tanzil, G.</creatorcontrib><creatorcontrib>Birkmann, J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical and experimental immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoeres, T.</au><au>Wilhelm, M.</au><au>Smetak, M.</au><au>Holzmann, E.</au><au>Schulze‐Tanzil, G.</au><au>Birkmann, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1</atitle><jtitle>Clinical and experimental immunology</jtitle><addtitle>Clin Exp Immunol</addtitle><date>2018-04</date><risdate>2018</risdate><volume>192</volume><issue>1</issue><spage>54</spage><epage>67</epage><pages>54-67</pages><issn>0009-9104</issn><eissn>1365-2249</eissn><abstract>Summary Vascular endothelial growth factor (VEGF) is an important regulator of physiological and pathological angiogenesis. Besides malignant and stromal cells, local immune cells shape VEGF signalling in the tumour microenvironment. Aminobisphosphonates such as zoledronic acid (Zol) are drugs known to inhibit osteoclast activity and bone resorption, but also have immunomodulatory and anti‐tumour effects. These properties have been linked previously to the down‐regulation of VEGF and interference with tumour neo‐angiogenesis. It was therefore surprising to find that treatment with Zol in combination with low‐dose interleukin (IL)‐2 increased serum VEGF levels in cancer patients. In this study we aimed to characterize the effect of Zol and IL‐2 on VEGF signalling of blood‐derived immune cells in vitro. Upon stimulation with IL‐2, T cells and natural killer (NK) cells increase production of VEGF consecutively to the release of proinflammatory interferon (IFN)‐γ, and Zol accelerates this response specifically in γδ T cells. VEGF can, in turn, be antagonized by soluble VEGF receptor (sVEGFR)‐1, which is released depending on stimulatory conditions and the presence of monocytes. Additionally, malignant cells represented by leukaemia and lymphoma cell lines produce VEGF and some release sVEGFR‐1 simultaneously. Our findings indicate a mechanism by which the VEGF and the sVEGFR‐1 production by immune cells regulates local VEGF signalling. Therefore, immunotherapeutic interventions may enable both pro‐ as well as anti‐tumour effects via immune cell‐mediated alterations of VEGF homeostasis. Stimulation induces VEGF production but also the release of sVEGFR‐1 by immune cells, which sequesters free VEGF and inhibit angiogenesis. Depending on the process of lymphocyte ‐ monocyte interaction, VEGF signaling is predominantly influenced in either way. Immune cells regulate VEGF homeostasis locally in a time dependent manner, influenced by the type and strength of primary stimuli and co‐stimulation.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29235095</pmid><doi>10.1111/cei.13090</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9494-0292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9104
ispartof Clinical and experimental immunology, 2018-04, Vol.192 (1), p.54-67
issn 0009-9104
1365-2249
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5842402
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central; Alma/SFX Local Collection
subjects Angiogenesis
Bone resorption
Cancer
Cell lines
Homeostasis
Immunomodulation
Immunosuppressive agents
Inflammation
Interferon
interleukin‐2
Leukemia
Lymphocytes
Lymphocytes T
Lymphoma
monocyte
Monocytes
Natural killer cells
Original
Physiological effects
soluble VEGF receptor
Stromal cells
Tumor cell lines
Tumor microenvironment
Tumors
Vascular endothelial growth factor
VEGF
Zoledronic acid
title Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor‐1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immune%20cells%20regulate%20VEGF%20signalling%20via%20release%20of%20VEGF%20and%20antagonistic%20soluble%20VEGF%20receptor%E2%80%901&rft.jtitle=Clinical%20and%20experimental%20immunology&rft.au=Hoeres,%20T.&rft.date=2018-04&rft.volume=192&rft.issue=1&rft.spage=54&rft.epage=67&rft.pages=54-67&rft.issn=0009-9104&rft.eissn=1365-2249&rft_id=info:doi/10.1111/cei.13090&rft_dat=%3Cproquest_pubme%3E2011567114%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011567114&rft_id=info:pmid/29235095&rfr_iscdi=true