The Effects of Systemic Therapy of PEGylated NEL-Like Protein 1 (NELL-1) on Fracture Healing in Mice
Fractures are common, with an incidence of 13.7 per 1000 adults annually. Systemic agents have been widely used for enhancing bone regeneration; however, the efficacy of these therapeutics for the management and prevention of fracture remains unclear. NEL-like protein 1 (NELL-1) is a potent pro-oste...
Gespeichert in:
Veröffentlicht in: | The American journal of pathology 2018-03, Vol.188 (3), p.715-727 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fractures are common, with an incidence of 13.7 per 1000 adults annually. Systemic agents have been widely used for enhancing bone regeneration; however, the efficacy of these therapeutics for the management and prevention of fracture remains unclear. NEL-like protein 1 (NELL-1) is a potent pro-osteogenic cytokine that has been modified with polyethylene glycol (PEG)ylation [PEGylated NELL-1 (NELL-PEG)] to enhance its pharmacokinetics for systemic therapy. Our aim was to investigate the effects of systemic administration of NELL-PEG on fracture healing in mice and on overall bone properties in uninjured bones. Ten-week–old CD-1 mice were subjected to an open osteotomy of bilateral radii and treated with weekly injections of NELL-PEG or PEG phosphate-buffered saline as control. Systemic injection of NELL-PEG resulted in improved bone mineral density of the fracture site and accelerated callus union. After 4 weeks of treatment, mice treated with NELL-PEG exhibited substantially enhanced callus volume, callus mineralization, and biomechanical properties. NELL-PEG injection significantly augmented bone regeneration, as confirmed by high expression of bone turnover rate, bone formation rate, and mineral apposition rate. Consistently, the immunohistochemistry results also confirmed a high bone remodeling activity in the NELL-PEG–treated group. Our findings suggest that weekly injection of NELL-PEG may have the clinical potential to accelerate fracture union and enhance overall bone properties, which may help prevent subsequent fractures. |
---|---|
ISSN: | 0002-9440 1525-2191 1525-2191 |
DOI: | 10.1016/j.ajpath.2017.11.018 |