Glia relay differentiation cues to coordinate neuronal development in Drosophila

Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achiev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-09, Vol.357 (6354), p.886-891
Hauptverfasser: Fernandes, Vilaiwan M., Chen, Zhenqing, Rossi, Anthony M., Zipfel, Jaqueline, Desplan, Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 891
container_issue 6354
container_start_page 886
container_title Science (American Association for the Advancement of Science)
container_volume 357
creator Fernandes, Vilaiwan M.
Chen, Zhenqing
Rossi, Anthony M.
Zipfel, Jaqueline
Desplan, Claude
description Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achieve retinotopy by inducing their target field in the optic lobe, the lamina neurons, with a secreted differentiation cue, epidermal growth factor (EGF). We find that communication between photoreceptors and lamina cells requires a signaling relay through glia. In response to photoreceptor-EGF, glia produce insulin-like peptides, which induce lamina neuronal differentiation. Our study identifies a role for glia in coordinating neuronal development across distinct brain regions, thus reconciling the timing of column assembly with that of delayed differentiation, as well as the spatiotemporal pattern of lamina neuron differentiation.
doi_str_mv 10.1126/science.aan3174
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5835562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399740</jstor_id><sourcerecordid>26399740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b3613304b89eeccb7aaa5728279a049663826f26da1dcabf7929461bc65318ff3</originalsourceid><addsrcrecordid>eNpdkT1PHDEYhC0UFA5ITRVkKU2aBX-svXYTCZFAkJCgILX1rtcbfPLZh72LxL-PT3chkMrFPB7NvIPQCSVnlDJ5Xqx30bozgMhp1-6hBSVaNJoR_gEtCOGyUaQTB-iwlCUhVdP8IzpgSknCFVmg--vgAWcX4AUPfhxddnHyMPkUsZ1dwVPCNqU8-AiTw9HNOUUIeHDPLqT1qtLYR_w9p5LWjz7AMdofIRT3afceoV9XPx4ufza3d9c3lxe3jW1bPjU9l5Rz0vZKO2dt3wGA6JhinQbSaim5YnJkcgA6WOjHTjPdStpbKThV48iP0Let73ruV26wNUiGYNbZryC_mATevFeifzS_07MRigshWTX4ujPI6ak2nczKF-tCgOjSXAzVNaIUlG3QL_-hyzTneoYN1QlCahVdqfMtZesxSnbjaxhKzGYts1vL7NaqP07fdnjl_85Tgc9bYFmmlP_pkmvdtYT_AYfanbo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975001339</pqid></control><display><type>article</type><title>Glia relay differentiation cues to coordinate neuronal development in Drosophila</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR</source><creator>Fernandes, Vilaiwan M. ; Chen, Zhenqing ; Rossi, Anthony M. ; Zipfel, Jaqueline ; Desplan, Claude</creator><creatorcontrib>Fernandes, Vilaiwan M. ; Chen, Zhenqing ; Rossi, Anthony M. ; Zipfel, Jaqueline ; Desplan, Claude</creatorcontrib><description>Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achieve retinotopy by inducing their target field in the optic lobe, the lamina neurons, with a secreted differentiation cue, epidermal growth factor (EGF). We find that communication between photoreceptors and lamina cells requires a signaling relay through glia. In response to photoreceptor-EGF, glia produce insulin-like peptides, which induce lamina neuronal differentiation. Our study identifies a role for glia in coordinating neuronal development across distinct brain regions, thus reconciling the timing of column assembly with that of delayed differentiation, as well as the spatiotemporal pattern of lamina neuron differentiation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aan3174</identifier><identifier>PMID: 28860380</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Alternation learning ; Animals ; Axons ; Brain ; Brain architecture ; Cues ; Differentiation ; Drosophila ; Drosophila melanogaster - cytology ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Epidermal growth factor ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; Glial cells ; Individualized Instruction ; Insects ; Insulin ; Insulin - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mutation ; Neural networks ; Neurogenesis ; Neuroglia - cytology ; Neuronal-glial interactions ; Neurons ; Optic lobe ; Optic Lobe, Nonmammalian - cytology ; Optic Lobe, Nonmammalian - embryology ; Patterning ; Peptides ; Photoreception ; Photoreceptor Cells, Invertebrate - cytology ; Photoreceptors ; Receptors, Invertebrate Peptide - genetics ; Receptors, Invertebrate Peptide - metabolism ; Relay ; Sensory systems ; Serine Endopeptidases - genetics ; Serine Endopeptidases - metabolism ; Signal Transduction ; Signaling ; Topographic mapping ; Topographic maps ; Topography ; Visual pathways ; Visual system</subject><ispartof>Science (American Association for the Advancement of Science), 2017-09, Vol.357 (6354), p.886-891</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b3613304b89eeccb7aaa5728279a049663826f26da1dcabf7929461bc65318ff3</citedby><cites>FETCH-LOGICAL-c443t-b3613304b89eeccb7aaa5728279a049663826f26da1dcabf7929461bc65318ff3</cites><orcidid>0000-0001-9345-7939 ; 0000-0002-1488-8448 ; 0000-0002-9214-9480 ; 0000-0002-1991-7252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399740$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399740$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,2885,2886,27928,27929,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28860380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, Vilaiwan M.</creatorcontrib><creatorcontrib>Chen, Zhenqing</creatorcontrib><creatorcontrib>Rossi, Anthony M.</creatorcontrib><creatorcontrib>Zipfel, Jaqueline</creatorcontrib><creatorcontrib>Desplan, Claude</creatorcontrib><title>Glia relay differentiation cues to coordinate neuronal development in Drosophila</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achieve retinotopy by inducing their target field in the optic lobe, the lamina neurons, with a secreted differentiation cue, epidermal growth factor (EGF). We find that communication between photoreceptors and lamina cells requires a signaling relay through glia. In response to photoreceptor-EGF, glia produce insulin-like peptides, which induce lamina neuronal differentiation. Our study identifies a role for glia in coordinating neuronal development across distinct brain regions, thus reconciling the timing of column assembly with that of delayed differentiation, as well as the spatiotemporal pattern of lamina neuron differentiation.</description><subject>Alternation learning</subject><subject>Animals</subject><subject>Axons</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Cues</subject><subject>Differentiation</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Epidermal growth factor</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>Glial cells</subject><subject>Individualized Instruction</subject><subject>Insects</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Neurogenesis</subject><subject>Neuroglia - cytology</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Optic lobe</subject><subject>Optic Lobe, Nonmammalian - cytology</subject><subject>Optic Lobe, Nonmammalian - embryology</subject><subject>Patterning</subject><subject>Peptides</subject><subject>Photoreception</subject><subject>Photoreceptor Cells, Invertebrate - cytology</subject><subject>Photoreceptors</subject><subject>Receptors, Invertebrate Peptide - genetics</subject><subject>Receptors, Invertebrate Peptide - metabolism</subject><subject>Relay</subject><subject>Sensory systems</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Topographic mapping</subject><subject>Topographic maps</subject><subject>Topography</subject><subject>Visual pathways</subject><subject>Visual system</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkT1PHDEYhC0UFA5ITRVkKU2aBX-svXYTCZFAkJCgILX1rtcbfPLZh72LxL-PT3chkMrFPB7NvIPQCSVnlDJ5Xqx30bozgMhp1-6hBSVaNJoR_gEtCOGyUaQTB-iwlCUhVdP8IzpgSknCFVmg--vgAWcX4AUPfhxddnHyMPkUsZ1dwVPCNqU8-AiTw9HNOUUIeHDPLqT1qtLYR_w9p5LWjz7AMdofIRT3afceoV9XPx4ufza3d9c3lxe3jW1bPjU9l5Rz0vZKO2dt3wGA6JhinQbSaim5YnJkcgA6WOjHTjPdStpbKThV48iP0Let73ruV26wNUiGYNbZryC_mATevFeifzS_07MRigshWTX4ujPI6ak2nczKF-tCgOjSXAzVNaIUlG3QL_-hyzTneoYN1QlCahVdqfMtZesxSnbjaxhKzGYts1vL7NaqP07fdnjl_85Tgc9bYFmmlP_pkmvdtYT_AYfanbo</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Fernandes, Vilaiwan M.</creator><creator>Chen, Zhenqing</creator><creator>Rossi, Anthony M.</creator><creator>Zipfel, Jaqueline</creator><creator>Desplan, Claude</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9345-7939</orcidid><orcidid>https://orcid.org/0000-0002-1488-8448</orcidid><orcidid>https://orcid.org/0000-0002-9214-9480</orcidid><orcidid>https://orcid.org/0000-0002-1991-7252</orcidid></search><sort><creationdate>20170901</creationdate><title>Glia relay differentiation cues to coordinate neuronal development in Drosophila</title><author>Fernandes, Vilaiwan M. ; Chen, Zhenqing ; Rossi, Anthony M. ; Zipfel, Jaqueline ; Desplan, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b3613304b89eeccb7aaa5728279a049663826f26da1dcabf7929461bc65318ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternation learning</topic><topic>Animals</topic><topic>Axons</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Cues</topic><topic>Differentiation</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Epidermal growth factor</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>Glial cells</topic><topic>Individualized Instruction</topic><topic>Insects</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Neurogenesis</topic><topic>Neuroglia - cytology</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Optic lobe</topic><topic>Optic Lobe, Nonmammalian - cytology</topic><topic>Optic Lobe, Nonmammalian - embryology</topic><topic>Patterning</topic><topic>Peptides</topic><topic>Photoreception</topic><topic>Photoreceptor Cells, Invertebrate - cytology</topic><topic>Photoreceptors</topic><topic>Receptors, Invertebrate Peptide - genetics</topic><topic>Receptors, Invertebrate Peptide - metabolism</topic><topic>Relay</topic><topic>Sensory systems</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Topographic mapping</topic><topic>Topographic maps</topic><topic>Topography</topic><topic>Visual pathways</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Vilaiwan M.</creatorcontrib><creatorcontrib>Chen, Zhenqing</creatorcontrib><creatorcontrib>Rossi, Anthony M.</creatorcontrib><creatorcontrib>Zipfel, Jaqueline</creatorcontrib><creatorcontrib>Desplan, Claude</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Vilaiwan M.</au><au>Chen, Zhenqing</au><au>Rossi, Anthony M.</au><au>Zipfel, Jaqueline</au><au>Desplan, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glia relay differentiation cues to coordinate neuronal development in Drosophila</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>357</volume><issue>6354</issue><spage>886</spage><epage>891</epage><pages>886-891</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achieve retinotopy by inducing their target field in the optic lobe, the lamina neurons, with a secreted differentiation cue, epidermal growth factor (EGF). We find that communication between photoreceptors and lamina cells requires a signaling relay through glia. In response to photoreceptor-EGF, glia produce insulin-like peptides, which induce lamina neuronal differentiation. Our study identifies a role for glia in coordinating neuronal development across distinct brain regions, thus reconciling the timing of column assembly with that of delayed differentiation, as well as the spatiotemporal pattern of lamina neuron differentiation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28860380</pmid><doi>10.1126/science.aan3174</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9345-7939</orcidid><orcidid>https://orcid.org/0000-0002-1488-8448</orcidid><orcidid>https://orcid.org/0000-0002-9214-9480</orcidid><orcidid>https://orcid.org/0000-0002-1991-7252</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-09, Vol.357 (6354), p.886-891
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5835562
source MEDLINE; Science Magazine; JSTOR
subjects Alternation learning
Animals
Axons
Brain
Brain architecture
Cues
Differentiation
Drosophila
Drosophila melanogaster - cytology
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Epidermal growth factor
ErbB Receptors - genetics
ErbB Receptors - metabolism
Glial cells
Individualized Instruction
Insects
Insulin
Insulin - metabolism
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mutation
Neural networks
Neurogenesis
Neuroglia - cytology
Neuronal-glial interactions
Neurons
Optic lobe
Optic Lobe, Nonmammalian - cytology
Optic Lobe, Nonmammalian - embryology
Patterning
Peptides
Photoreception
Photoreceptor Cells, Invertebrate - cytology
Photoreceptors
Receptors, Invertebrate Peptide - genetics
Receptors, Invertebrate Peptide - metabolism
Relay
Sensory systems
Serine Endopeptidases - genetics
Serine Endopeptidases - metabolism
Signal Transduction
Signaling
Topographic mapping
Topographic maps
Topography
Visual pathways
Visual system
title Glia relay differentiation cues to coordinate neuronal development in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glia%20relay%20differentiation%20cues%20to%20coordinate%20neuronal%20development%20in%20Drosophila&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Fernandes,%20Vilaiwan%20M.&rft.date=2017-09-01&rft.volume=357&rft.issue=6354&rft.spage=886&rft.epage=891&rft.pages=886-891&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aan3174&rft_dat=%3Cjstor_pubme%3E26399740%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975001339&rft_id=info:pmid/28860380&rft_jstor_id=26399740&rfr_iscdi=true