Glia relay differentiation cues to coordinate neuronal development in Drosophila
Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achiev...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-09, Vol.357 (6354), p.886-891 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | 6354 |
container_start_page | 886 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 357 |
creator | Fernandes, Vilaiwan M. Chen, Zhenqing Rossi, Anthony M. Zipfel, Jaqueline Desplan, Claude |
description | Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achieve retinotopy by inducing their target field in the optic lobe, the lamina neurons, with a secreted differentiation cue, epidermal growth factor (EGF). We find that communication between photoreceptors and lamina cells requires a signaling relay through glia. In response to photoreceptor-EGF, glia produce insulin-like peptides, which induce lamina neuronal differentiation. Our study identifies a role for glia in coordinating neuronal development across distinct brain regions, thus reconciling the timing of column assembly with that of delayed differentiation, as well as the spatiotemporal pattern of lamina neuron differentiation. |
doi_str_mv | 10.1126/science.aan3174 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5835562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399740</jstor_id><sourcerecordid>26399740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b3613304b89eeccb7aaa5728279a049663826f26da1dcabf7929461bc65318ff3</originalsourceid><addsrcrecordid>eNpdkT1PHDEYhC0UFA5ITRVkKU2aBX-svXYTCZFAkJCgILX1rtcbfPLZh72LxL-PT3chkMrFPB7NvIPQCSVnlDJ5Xqx30bozgMhp1-6hBSVaNJoR_gEtCOGyUaQTB-iwlCUhVdP8IzpgSknCFVmg--vgAWcX4AUPfhxddnHyMPkUsZ1dwVPCNqU8-AiTw9HNOUUIeHDPLqT1qtLYR_w9p5LWjz7AMdofIRT3afceoV9XPx4ufza3d9c3lxe3jW1bPjU9l5Rz0vZKO2dt3wGA6JhinQbSaim5YnJkcgA6WOjHTjPdStpbKThV48iP0Let73ruV26wNUiGYNbZryC_mATevFeifzS_07MRigshWTX4ujPI6ak2nczKF-tCgOjSXAzVNaIUlG3QL_-hyzTneoYN1QlCahVdqfMtZesxSnbjaxhKzGYts1vL7NaqP07fdnjl_85Tgc9bYFmmlP_pkmvdtYT_AYfanbo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975001339</pqid></control><display><type>article</type><title>Glia relay differentiation cues to coordinate neuronal development in Drosophila</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR</source><creator>Fernandes, Vilaiwan M. ; Chen, Zhenqing ; Rossi, Anthony M. ; Zipfel, Jaqueline ; Desplan, Claude</creator><creatorcontrib>Fernandes, Vilaiwan M. ; Chen, Zhenqing ; Rossi, Anthony M. ; Zipfel, Jaqueline ; Desplan, Claude</creatorcontrib><description>Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achieve retinotopy by inducing their target field in the optic lobe, the lamina neurons, with a secreted differentiation cue, epidermal growth factor (EGF). We find that communication between photoreceptors and lamina cells requires a signaling relay through glia. In response to photoreceptor-EGF, glia produce insulin-like peptides, which induce lamina neuronal differentiation. Our study identifies a role for glia in coordinating neuronal development across distinct brain regions, thus reconciling the timing of column assembly with that of delayed differentiation, as well as the spatiotemporal pattern of lamina neuron differentiation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aan3174</identifier><identifier>PMID: 28860380</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Alternation learning ; Animals ; Axons ; Brain ; Brain architecture ; Cues ; Differentiation ; Drosophila ; Drosophila melanogaster - cytology ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Epidermal growth factor ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; Glial cells ; Individualized Instruction ; Insects ; Insulin ; Insulin - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mutation ; Neural networks ; Neurogenesis ; Neuroglia - cytology ; Neuronal-glial interactions ; Neurons ; Optic lobe ; Optic Lobe, Nonmammalian - cytology ; Optic Lobe, Nonmammalian - embryology ; Patterning ; Peptides ; Photoreception ; Photoreceptor Cells, Invertebrate - cytology ; Photoreceptors ; Receptors, Invertebrate Peptide - genetics ; Receptors, Invertebrate Peptide - metabolism ; Relay ; Sensory systems ; Serine Endopeptidases - genetics ; Serine Endopeptidases - metabolism ; Signal Transduction ; Signaling ; Topographic mapping ; Topographic maps ; Topography ; Visual pathways ; Visual system</subject><ispartof>Science (American Association for the Advancement of Science), 2017-09, Vol.357 (6354), p.886-891</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b3613304b89eeccb7aaa5728279a049663826f26da1dcabf7929461bc65318ff3</citedby><cites>FETCH-LOGICAL-c443t-b3613304b89eeccb7aaa5728279a049663826f26da1dcabf7929461bc65318ff3</cites><orcidid>0000-0001-9345-7939 ; 0000-0002-1488-8448 ; 0000-0002-9214-9480 ; 0000-0002-1991-7252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399740$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399740$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,2885,2886,27928,27929,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28860380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, Vilaiwan M.</creatorcontrib><creatorcontrib>Chen, Zhenqing</creatorcontrib><creatorcontrib>Rossi, Anthony M.</creatorcontrib><creatorcontrib>Zipfel, Jaqueline</creatorcontrib><creatorcontrib>Desplan, Claude</creatorcontrib><title>Glia relay differentiation cues to coordinate neuronal development in Drosophila</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achieve retinotopy by inducing their target field in the optic lobe, the lamina neurons, with a secreted differentiation cue, epidermal growth factor (EGF). We find that communication between photoreceptors and lamina cells requires a signaling relay through glia. In response to photoreceptor-EGF, glia produce insulin-like peptides, which induce lamina neuronal differentiation. Our study identifies a role for glia in coordinating neuronal development across distinct brain regions, thus reconciling the timing of column assembly with that of delayed differentiation, as well as the spatiotemporal pattern of lamina neuron differentiation.</description><subject>Alternation learning</subject><subject>Animals</subject><subject>Axons</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Cues</subject><subject>Differentiation</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Epidermal growth factor</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>Glial cells</subject><subject>Individualized Instruction</subject><subject>Insects</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Neurogenesis</subject><subject>Neuroglia - cytology</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Optic lobe</subject><subject>Optic Lobe, Nonmammalian - cytology</subject><subject>Optic Lobe, Nonmammalian - embryology</subject><subject>Patterning</subject><subject>Peptides</subject><subject>Photoreception</subject><subject>Photoreceptor Cells, Invertebrate - cytology</subject><subject>Photoreceptors</subject><subject>Receptors, Invertebrate Peptide - genetics</subject><subject>Receptors, Invertebrate Peptide - metabolism</subject><subject>Relay</subject><subject>Sensory systems</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Topographic mapping</subject><subject>Topographic maps</subject><subject>Topography</subject><subject>Visual pathways</subject><subject>Visual system</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkT1PHDEYhC0UFA5ITRVkKU2aBX-svXYTCZFAkJCgILX1rtcbfPLZh72LxL-PT3chkMrFPB7NvIPQCSVnlDJ5Xqx30bozgMhp1-6hBSVaNJoR_gEtCOGyUaQTB-iwlCUhVdP8IzpgSknCFVmg--vgAWcX4AUPfhxddnHyMPkUsZ1dwVPCNqU8-AiTw9HNOUUIeHDPLqT1qtLYR_w9p5LWjz7AMdofIRT3afceoV9XPx4ufza3d9c3lxe3jW1bPjU9l5Rz0vZKO2dt3wGA6JhinQbSaim5YnJkcgA6WOjHTjPdStpbKThV48iP0Let73ruV26wNUiGYNbZryC_mATevFeifzS_07MRigshWTX4ujPI6ak2nczKF-tCgOjSXAzVNaIUlG3QL_-hyzTneoYN1QlCahVdqfMtZesxSnbjaxhKzGYts1vL7NaqP07fdnjl_85Tgc9bYFmmlP_pkmvdtYT_AYfanbo</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Fernandes, Vilaiwan M.</creator><creator>Chen, Zhenqing</creator><creator>Rossi, Anthony M.</creator><creator>Zipfel, Jaqueline</creator><creator>Desplan, Claude</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9345-7939</orcidid><orcidid>https://orcid.org/0000-0002-1488-8448</orcidid><orcidid>https://orcid.org/0000-0002-9214-9480</orcidid><orcidid>https://orcid.org/0000-0002-1991-7252</orcidid></search><sort><creationdate>20170901</creationdate><title>Glia relay differentiation cues to coordinate neuronal development in Drosophila</title><author>Fernandes, Vilaiwan M. ; Chen, Zhenqing ; Rossi, Anthony M. ; Zipfel, Jaqueline ; Desplan, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b3613304b89eeccb7aaa5728279a049663826f26da1dcabf7929461bc65318ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alternation learning</topic><topic>Animals</topic><topic>Axons</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Cues</topic><topic>Differentiation</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Epidermal growth factor</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>Glial cells</topic><topic>Individualized Instruction</topic><topic>Insects</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Neurogenesis</topic><topic>Neuroglia - cytology</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Optic lobe</topic><topic>Optic Lobe, Nonmammalian - cytology</topic><topic>Optic Lobe, Nonmammalian - embryology</topic><topic>Patterning</topic><topic>Peptides</topic><topic>Photoreception</topic><topic>Photoreceptor Cells, Invertebrate - cytology</topic><topic>Photoreceptors</topic><topic>Receptors, Invertebrate Peptide - genetics</topic><topic>Receptors, Invertebrate Peptide - metabolism</topic><topic>Relay</topic><topic>Sensory systems</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Topographic mapping</topic><topic>Topographic maps</topic><topic>Topography</topic><topic>Visual pathways</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Vilaiwan M.</creatorcontrib><creatorcontrib>Chen, Zhenqing</creatorcontrib><creatorcontrib>Rossi, Anthony M.</creatorcontrib><creatorcontrib>Zipfel, Jaqueline</creatorcontrib><creatorcontrib>Desplan, Claude</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Vilaiwan M.</au><au>Chen, Zhenqing</au><au>Rossi, Anthony M.</au><au>Zipfel, Jaqueline</au><au>Desplan, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glia relay differentiation cues to coordinate neuronal development in Drosophila</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>357</volume><issue>6354</issue><spage>886</spage><epage>891</epage><pages>886-891</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Neuronal birth and specification must be coordinated across the developing brain to generate the neurons that constitute neural circuits. We used the Drosophila visual system to investigate how development is coordinated to establish retinotopy, a feature of all visual systems. Photoreceptors achieve retinotopy by inducing their target field in the optic lobe, the lamina neurons, with a secreted differentiation cue, epidermal growth factor (EGF). We find that communication between photoreceptors and lamina cells requires a signaling relay through glia. In response to photoreceptor-EGF, glia produce insulin-like peptides, which induce lamina neuronal differentiation. Our study identifies a role for glia in coordinating neuronal development across distinct brain regions, thus reconciling the timing of column assembly with that of delayed differentiation, as well as the spatiotemporal pattern of lamina neuron differentiation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28860380</pmid><doi>10.1126/science.aan3174</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9345-7939</orcidid><orcidid>https://orcid.org/0000-0002-1488-8448</orcidid><orcidid>https://orcid.org/0000-0002-9214-9480</orcidid><orcidid>https://orcid.org/0000-0002-1991-7252</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-09, Vol.357 (6354), p.886-891 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5835562 |
source | MEDLINE; Science Magazine; JSTOR |
subjects | Alternation learning Animals Axons Brain Brain architecture Cues Differentiation Drosophila Drosophila melanogaster - cytology Drosophila melanogaster - embryology Drosophila melanogaster - genetics Drosophila Proteins - genetics Drosophila Proteins - metabolism Epidermal growth factor ErbB Receptors - genetics ErbB Receptors - metabolism Glial cells Individualized Instruction Insects Insulin Insulin - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism Mutation Neural networks Neurogenesis Neuroglia - cytology Neuronal-glial interactions Neurons Optic lobe Optic Lobe, Nonmammalian - cytology Optic Lobe, Nonmammalian - embryology Patterning Peptides Photoreception Photoreceptor Cells, Invertebrate - cytology Photoreceptors Receptors, Invertebrate Peptide - genetics Receptors, Invertebrate Peptide - metabolism Relay Sensory systems Serine Endopeptidases - genetics Serine Endopeptidases - metabolism Signal Transduction Signaling Topographic mapping Topographic maps Topography Visual pathways Visual system |
title | Glia relay differentiation cues to coordinate neuronal development in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glia%20relay%20differentiation%20cues%20to%20coordinate%20neuronal%20development%20in%20Drosophila&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Fernandes,%20Vilaiwan%20M.&rft.date=2017-09-01&rft.volume=357&rft.issue=6354&rft.spage=886&rft.epage=891&rft.pages=886-891&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aan3174&rft_dat=%3Cjstor_pubme%3E26399740%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975001339&rft_id=info:pmid/28860380&rft_jstor_id=26399740&rfr_iscdi=true |