Using the fast fourier transform in binding free energy calculations
According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to e...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2018-04, Vol.39 (11), p.621-636 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 636 |
---|---|
container_issue | 11 |
container_start_page | 621 |
container_title | Journal of computational chemistry |
container_volume | 39 |
creator | Nguyen, Trung Hai Zhou, Huan‐Xiang Minh, David D. L. |
description | According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex (
R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations (
R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc.
The authors demonstrate the feasibility of using the fast Fourier transform to calculate binding free energies between proteins and small molecules. A key part of the algorithm involves calculating interaction energies when the small molecule is translated across the binding site on the receptor (lower right inset). On averaging over the interaction energies and over multiple protein conformations, the resulting binding free energy is consistent with those from more expensive alchemical methods (scatter plot). |
doi_str_mv | 10.1002/jcc.25139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5834390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009389426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4089-854fd58d947a6f640ef83983ed69dff99cc836165b61fbee59c9c084f9e13e973</originalsourceid><addsrcrecordid>eNp1kU2P0zAQhi0EomXhwB9AkbjAIe04ThzPBWlVvrUSFypxs1xn3HWVOsVOFvXf46WlAiROc5hHj96Zl7HnHBYcoFrurF1UDRf4gM05oCxRtd8esjlwrEolGz5jT1LaAYBoZP2YzSqsWkCEOXu7Tj5si_GWCmfSWLhhip5iMUYTkhvivvCh2PjQ3VMuEhUUKG6PhTW9nXoz-iGkp-yRM32iZ-d5xdbv331dfSxvvnz4tLq-KW0NCkvV1K5rVId1a6STNZBTApWgTmLnHKK1Skgum43kbkPUoEULqnZIXBC24oq9OXkP02ZPnaWQY_b6EP3exKMejNd_b4K_1dvhTjdK1AIhC16dBXH4PlEa9d4nS31vAg1T0hxbRNmi4Bl9-Q-6y68J-TxdAaBQWFcyU69PlI1DSpHcJQwHfd-Nzt3oX91k9sWf6S_k7zIysDwBP3xPx_-b9OfV6qT8CbcKmQc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009389426</pqid></control><display><type>article</type><title>Using the fast fourier transform in binding free energy calculations</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Nguyen, Trung Hai ; Zhou, Huan‐Xiang ; Minh, David D. L.</creator><creatorcontrib>Nguyen, Trung Hai ; Zhou, Huan‐Xiang ; Minh, David D. L.</creatorcontrib><description>According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex (
R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations (
R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc.
The authors demonstrate the feasibility of using the fast Fourier transform to calculate binding free energies between proteins and small molecules. A key part of the algorithm involves calculating interaction energies when the small molecule is translated across the binding site on the receptor (lower right inset). On averaging over the interaction energies and over multiple protein conformations, the resulting binding free energy is consistent with those from more expensive alchemical methods (scatter plot).</description><identifier>ISSN: 0192-8651</identifier><identifier>ISSN: 1096-987X</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.25139</identifier><identifier>PMID: 29270990</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Binding energy ; Binding Sites ; Configurations ; fast Fourier transform ; Fast Fourier transformations ; Fourier Analysis ; Fourier transforms ; Free energy ; implicit ligand theory ; Ligands ; Lysozyme ; Mathematical analysis ; Molecular docking ; Molecular Docking Simulation ; Muramidase - chemistry ; Muramidase - metabolism ; noncovalent binding free energy ; Organic Chemicals - chemistry ; Organic chemistry ; protein–ligand ; T4 lysozyme ; Thermodynamics</subject><ispartof>Journal of computational chemistry, 2018-04, Vol.39 (11), p.621-636</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4089-854fd58d947a6f640ef83983ed69dff99cc836165b61fbee59c9c084f9e13e973</citedby><cites>FETCH-LOGICAL-c4089-854fd58d947a6f640ef83983ed69dff99cc836165b61fbee59c9c084f9e13e973</cites><orcidid>0000-0002-4802-2618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.25139$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.25139$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29270990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Trung Hai</creatorcontrib><creatorcontrib>Zhou, Huan‐Xiang</creatorcontrib><creatorcontrib>Minh, David D. L.</creatorcontrib><title>Using the fast fourier transform in binding free energy calculations</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex (
R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations (
R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc.
The authors demonstrate the feasibility of using the fast Fourier transform to calculate binding free energies between proteins and small molecules. A key part of the algorithm involves calculating interaction energies when the small molecule is translated across the binding site on the receptor (lower right inset). On averaging over the interaction energies and over multiple protein conformations, the resulting binding free energy is consistent with those from more expensive alchemical methods (scatter plot).</description><subject>Algorithms</subject><subject>Binding energy</subject><subject>Binding Sites</subject><subject>Configurations</subject><subject>fast Fourier transform</subject><subject>Fast Fourier transformations</subject><subject>Fourier Analysis</subject><subject>Fourier transforms</subject><subject>Free energy</subject><subject>implicit ligand theory</subject><subject>Ligands</subject><subject>Lysozyme</subject><subject>Mathematical analysis</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - metabolism</subject><subject>noncovalent binding free energy</subject><subject>Organic Chemicals - chemistry</subject><subject>Organic chemistry</subject><subject>protein–ligand</subject><subject>T4 lysozyme</subject><subject>Thermodynamics</subject><issn>0192-8651</issn><issn>1096-987X</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU2P0zAQhi0EomXhwB9AkbjAIe04ThzPBWlVvrUSFypxs1xn3HWVOsVOFvXf46WlAiROc5hHj96Zl7HnHBYcoFrurF1UDRf4gM05oCxRtd8esjlwrEolGz5jT1LaAYBoZP2YzSqsWkCEOXu7Tj5si_GWCmfSWLhhip5iMUYTkhvivvCh2PjQ3VMuEhUUKG6PhTW9nXoz-iGkp-yRM32iZ-d5xdbv331dfSxvvnz4tLq-KW0NCkvV1K5rVId1a6STNZBTApWgTmLnHKK1Skgum43kbkPUoEULqnZIXBC24oq9OXkP02ZPnaWQY_b6EP3exKMejNd_b4K_1dvhTjdK1AIhC16dBXH4PlEa9d4nS31vAg1T0hxbRNmi4Bl9-Q-6y68J-TxdAaBQWFcyU69PlI1DSpHcJQwHfd-Nzt3oX91k9sWf6S_k7zIysDwBP3xPx_-b9OfV6qT8CbcKmQc</recordid><startdate>20180430</startdate><enddate>20180430</enddate><creator>Nguyen, Trung Hai</creator><creator>Zhou, Huan‐Xiang</creator><creator>Minh, David D. L.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4802-2618</orcidid></search><sort><creationdate>20180430</creationdate><title>Using the fast fourier transform in binding free energy calculations</title><author>Nguyen, Trung Hai ; Zhou, Huan‐Xiang ; Minh, David D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4089-854fd58d947a6f640ef83983ed69dff99cc836165b61fbee59c9c084f9e13e973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Binding energy</topic><topic>Binding Sites</topic><topic>Configurations</topic><topic>fast Fourier transform</topic><topic>Fast Fourier transformations</topic><topic>Fourier Analysis</topic><topic>Fourier transforms</topic><topic>Free energy</topic><topic>implicit ligand theory</topic><topic>Ligands</topic><topic>Lysozyme</topic><topic>Mathematical analysis</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - metabolism</topic><topic>noncovalent binding free energy</topic><topic>Organic Chemicals - chemistry</topic><topic>Organic chemistry</topic><topic>protein–ligand</topic><topic>T4 lysozyme</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trung Hai</creatorcontrib><creatorcontrib>Zhou, Huan‐Xiang</creatorcontrib><creatorcontrib>Minh, David D. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trung Hai</au><au>Zhou, Huan‐Xiang</au><au>Minh, David D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the fast fourier transform in binding free energy calculations</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2018-04-30</date><risdate>2018</risdate><volume>39</volume><issue>11</issue><spage>621</spage><epage>636</epage><pages>621-636</pages><issn>0192-8651</issn><issn>1096-987X</issn><eissn>1096-987X</eissn><abstract>According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex (
R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations (
R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc.
The authors demonstrate the feasibility of using the fast Fourier transform to calculate binding free energies between proteins and small molecules. A key part of the algorithm involves calculating interaction energies when the small molecule is translated across the binding site on the receptor (lower right inset). On averaging over the interaction energies and over multiple protein conformations, the resulting binding free energy is consistent with those from more expensive alchemical methods (scatter plot).</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29270990</pmid><doi>10.1002/jcc.25139</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4802-2618</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2018-04, Vol.39 (11), p.621-636 |
issn | 0192-8651 1096-987X 1096-987X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5834390 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Algorithms Binding energy Binding Sites Configurations fast Fourier transform Fast Fourier transformations Fourier Analysis Fourier transforms Free energy implicit ligand theory Ligands Lysozyme Mathematical analysis Molecular docking Molecular Docking Simulation Muramidase - chemistry Muramidase - metabolism noncovalent binding free energy Organic Chemicals - chemistry Organic chemistry protein–ligand T4 lysozyme Thermodynamics |
title | Using the fast fourier transform in binding free energy calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20fast%20fourier%20transform%20in%20binding%20free%20energy%20calculations&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Nguyen,%20Trung%20Hai&rft.date=2018-04-30&rft.volume=39&rft.issue=11&rft.spage=621&rft.epage=636&rft.pages=621-636&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.25139&rft_dat=%3Cproquest_pubme%3E2009389426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2009389426&rft_id=info:pmid/29270990&rfr_iscdi=true |