AMPKα2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation

RATIONALE:Mitochondrial dysfunction plays an important role in heart failure (HF). However, the molecular mechanisms regulating mitochondrial functions via selective mitochondrial autophagy (mitophagy) are poorly understood. OBJECTIVE:We sought to determine the role of AMPK (AMP-activated protein ki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2018-03, Vol.122 (5), p.712-729
Hauptverfasser: Wang, Bei, Nie, Jiali, Wu, Lujin, Hu, Yangyang, Wen, Zheng, Dong, Lingli, Zou, Ming-Hui, Chen, Chen, Wang, Dao Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 729
container_issue 5
container_start_page 712
container_title Circulation research
container_volume 122
creator Wang, Bei
Nie, Jiali
Wu, Lujin
Hu, Yangyang
Wen, Zheng
Dong, Lingli
Zou, Ming-Hui
Chen, Chen
Wang, Dao Wen
description RATIONALE:Mitochondrial dysfunction plays an important role in heart failure (HF). However, the molecular mechanisms regulating mitochondrial functions via selective mitochondrial autophagy (mitophagy) are poorly understood. OBJECTIVE:We sought to determine the role of AMPK (AMP-activated protein kinase) in selective mitophagy during HF. METHODS AND RESULTS:An isoform shift from AMPKα2 to AMPKα1 was observed in failing heart samples from HF patients and transverse aortic constriction–induced mice, accompanied by decreased mitophagy and mitochondrial function. The recombinant adeno-associated virus Serotype 9-mediated overexpression of AMPKα2 in mouse hearts prevented the development of transverse aortic constriction–induced chronic HF by increasing mitophagy and improving mitochondrial function. In contrast, AMPKα2 mutant mice exhibited an exacerbation of the early progression of transverse aortic constriction–induced HF via decreases in cardiac mitophagy. In isolated adult mouse cardiomyocytes, AMPKα2 overexpression mechanistically rescued the impairment of mitophagy after phenylephrine stimulation for 24 hours. Genetic knockdown of AMPKα2, but not AMPKα1, by short interfering RNA suppressed the early phase (6 hours) of phenylephrine-induced compensatory increases in mitophagy. Furthermore, AMPKα2 specifically interacted with phosphorylated PINK1 (PTEN-induced putative kinase 1) at Ser495 after phenylephrine stimulation. Subsequently, phosphorylated PINK1 recruited the E3 ubiquitin ligase, Parkin, to depolarized mitochondria, and then enhanced the role of the PINK1–Parkin–SQSTM1 (sequestosome-1) pathway involved in cardiac mitophagy. This increase in cardiac mitophagy was accompanied by the elimination of damaged mitochondria, improvement in mitochondrial function, decrease in reactive oxygen species production, and apoptosis of cardiomyocytes. Finally, Ala mutation of PINK1 at Ser495 partially suppressed AMPKα2 overexpression-induced mitophagy and improvement of mitochondrial function in phenylephrine-stimulated cardiomyocytes, whereas Asp (phosphorylation mimic) mutation promoted mitophagy after phenylephrine stimulation. CONCLUSIONS:In failing hearts, the dominant AMPKα isoform switched from AMPKα2 to AMPKα1, which accelerated HF. The results show that phosphorylation of Ser495 in PINK1 by AMPKα2 was essential for efficient mitophagy to prevent the progression of HF.
doi_str_mv 10.1161/CIRCRESAHA.117.312317
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5834386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982842195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4007-43334b7339b15b5796f76d919ce2418b9b345b80b839c7cf218645e623a008213</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EokvhEUCWuHBJ8dhOHF-QomXLrtrCqsDZclJn4yUbB9vZah-LF-GZMNpS_lw4jUbzm0_fzIfQcyBnAAW8nq-u59eLj9WySr04Y0AZiAdoBjnlGc8FPEQzQojMBGPkBD0JYUsIcEblY3RCJS15IckMbaur9cX3bxSvvYumiQFXG22HEHHsDH5r9qZ3484MEbsWL432EZ9r20_e4PqAF0Onh8YOG3xloxs7vTngvdV4vXp_AXjduTB2zh96Ha0bnqJHre6DeXZXT9Hn88Wn-TK7_PBuNa8us4YTIjLOGON1ci1ryOtcyKIVxY0E2RjKoaxlzXhel6QumWxE01IoC56bgjJNSEmBnaI3R91xqnfmpknmve7V6O1O-4Ny2qq_J4Pt1MbtVV4yzsoiCby6E_Du62RCVDsbGtP3ejBuCgpkmd5HQeYJffkPunWTH9J5ihIAVkjBZaLyI9V4F4I37b0ZIOpnmup3mqkX6phm2nvx5yX3W7_iS4A8Areuj8aHL_10a7zqjO5j9x_xH74jrXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011369749</pqid></control><display><type>article</type><title>AMPKα2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation</title><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Wang, Bei ; Nie, Jiali ; Wu, Lujin ; Hu, Yangyang ; Wen, Zheng ; Dong, Lingli ; Zou, Ming-Hui ; Chen, Chen ; Wang, Dao Wen</creator><creatorcontrib>Wang, Bei ; Nie, Jiali ; Wu, Lujin ; Hu, Yangyang ; Wen, Zheng ; Dong, Lingli ; Zou, Ming-Hui ; Chen, Chen ; Wang, Dao Wen</creatorcontrib><description>RATIONALE:Mitochondrial dysfunction plays an important role in heart failure (HF). However, the molecular mechanisms regulating mitochondrial functions via selective mitochondrial autophagy (mitophagy) are poorly understood. OBJECTIVE:We sought to determine the role of AMPK (AMP-activated protein kinase) in selective mitophagy during HF. METHODS AND RESULTS:An isoform shift from AMPKα2 to AMPKα1 was observed in failing heart samples from HF patients and transverse aortic constriction–induced mice, accompanied by decreased mitophagy and mitochondrial function. The recombinant adeno-associated virus Serotype 9-mediated overexpression of AMPKα2 in mouse hearts prevented the development of transverse aortic constriction–induced chronic HF by increasing mitophagy and improving mitochondrial function. In contrast, AMPKα2 mutant mice exhibited an exacerbation of the early progression of transverse aortic constriction–induced HF via decreases in cardiac mitophagy. In isolated adult mouse cardiomyocytes, AMPKα2 overexpression mechanistically rescued the impairment of mitophagy after phenylephrine stimulation for 24 hours. Genetic knockdown of AMPKα2, but not AMPKα1, by short interfering RNA suppressed the early phase (6 hours) of phenylephrine-induced compensatory increases in mitophagy. Furthermore, AMPKα2 specifically interacted with phosphorylated PINK1 (PTEN-induced putative kinase 1) at Ser495 after phenylephrine stimulation. Subsequently, phosphorylated PINK1 recruited the E3 ubiquitin ligase, Parkin, to depolarized mitochondria, and then enhanced the role of the PINK1–Parkin–SQSTM1 (sequestosome-1) pathway involved in cardiac mitophagy. This increase in cardiac mitophagy was accompanied by the elimination of damaged mitochondria, improvement in mitochondrial function, decrease in reactive oxygen species production, and apoptosis of cardiomyocytes. Finally, Ala mutation of PINK1 at Ser495 partially suppressed AMPKα2 overexpression-induced mitophagy and improvement of mitochondrial function in phenylephrine-stimulated cardiomyocytes, whereas Asp (phosphorylation mimic) mutation promoted mitophagy after phenylephrine stimulation. CONCLUSIONS:In failing hearts, the dominant AMPKα isoform switched from AMPKα2 to AMPKα1, which accelerated HF. The results show that phosphorylation of Ser495 in PINK1 by AMPKα2 was essential for efficient mitophagy to prevent the progression of HF.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.117.312317</identifier><identifier>PMID: 29284690</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>AMP ; AMP-activated protein kinase ; Aorta ; Apoptosis ; Autophagy ; Cardiomyocytes ; Heart diseases ; Heart failure ; Kinases ; Mitochondria ; Mitophagy ; Molecular modelling ; Mutation ; Parkin protein ; Phagocytosis ; Phenylephrine ; Phosphorylation ; PTEN protein ; PTEN-induced putative kinase ; Reactive oxygen species ; Ribonucleic acid ; RNA ; siRNA ; Ubiquitin ; Ubiquitin-protein ligase</subject><ispartof>Circulation research, 2018-03, Vol.122 (5), p.712-729</ispartof><rights>2018 American Heart Association, Inc.</rights><rights>2017 American Heart Association, Inc.</rights><rights>Copyright Lippincott Williams &amp; Wilkins Ovid Technologies Mar 2, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4007-43334b7339b15b5796f76d919ce2418b9b345b80b839c7cf218645e623a008213</citedby><cites>FETCH-LOGICAL-c4007-43334b7339b15b5796f76d919ce2418b9b345b80b839c7cf218645e623a008213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29284690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Nie, Jiali</creatorcontrib><creatorcontrib>Wu, Lujin</creatorcontrib><creatorcontrib>Hu, Yangyang</creatorcontrib><creatorcontrib>Wen, Zheng</creatorcontrib><creatorcontrib>Dong, Lingli</creatorcontrib><creatorcontrib>Zou, Ming-Hui</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wang, Dao Wen</creatorcontrib><title>AMPKα2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>RATIONALE:Mitochondrial dysfunction plays an important role in heart failure (HF). However, the molecular mechanisms regulating mitochondrial functions via selective mitochondrial autophagy (mitophagy) are poorly understood. OBJECTIVE:We sought to determine the role of AMPK (AMP-activated protein kinase) in selective mitophagy during HF. METHODS AND RESULTS:An isoform shift from AMPKα2 to AMPKα1 was observed in failing heart samples from HF patients and transverse aortic constriction–induced mice, accompanied by decreased mitophagy and mitochondrial function. The recombinant adeno-associated virus Serotype 9-mediated overexpression of AMPKα2 in mouse hearts prevented the development of transverse aortic constriction–induced chronic HF by increasing mitophagy and improving mitochondrial function. In contrast, AMPKα2 mutant mice exhibited an exacerbation of the early progression of transverse aortic constriction–induced HF via decreases in cardiac mitophagy. In isolated adult mouse cardiomyocytes, AMPKα2 overexpression mechanistically rescued the impairment of mitophagy after phenylephrine stimulation for 24 hours. Genetic knockdown of AMPKα2, but not AMPKα1, by short interfering RNA suppressed the early phase (6 hours) of phenylephrine-induced compensatory increases in mitophagy. Furthermore, AMPKα2 specifically interacted with phosphorylated PINK1 (PTEN-induced putative kinase 1) at Ser495 after phenylephrine stimulation. Subsequently, phosphorylated PINK1 recruited the E3 ubiquitin ligase, Parkin, to depolarized mitochondria, and then enhanced the role of the PINK1–Parkin–SQSTM1 (sequestosome-1) pathway involved in cardiac mitophagy. This increase in cardiac mitophagy was accompanied by the elimination of damaged mitochondria, improvement in mitochondrial function, decrease in reactive oxygen species production, and apoptosis of cardiomyocytes. Finally, Ala mutation of PINK1 at Ser495 partially suppressed AMPKα2 overexpression-induced mitophagy and improvement of mitochondrial function in phenylephrine-stimulated cardiomyocytes, whereas Asp (phosphorylation mimic) mutation promoted mitophagy after phenylephrine stimulation. CONCLUSIONS:In failing hearts, the dominant AMPKα isoform switched from AMPKα2 to AMPKα1, which accelerated HF. The results show that phosphorylation of Ser495 in PINK1 by AMPKα2 was essential for efficient mitophagy to prevent the progression of HF.</description><subject>AMP</subject><subject>AMP-activated protein kinase</subject><subject>Aorta</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Cardiomyocytes</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Kinases</subject><subject>Mitochondria</subject><subject>Mitophagy</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Parkin protein</subject><subject>Phagocytosis</subject><subject>Phenylephrine</subject><subject>Phosphorylation</subject><subject>PTEN protein</subject><subject>PTEN-induced putative kinase</subject><subject>Reactive oxygen species</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>siRNA</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi0EokvhEUCWuHBJ8dhOHF-QomXLrtrCqsDZclJn4yUbB9vZah-LF-GZMNpS_lw4jUbzm0_fzIfQcyBnAAW8nq-u59eLj9WySr04Y0AZiAdoBjnlGc8FPEQzQojMBGPkBD0JYUsIcEblY3RCJS15IckMbaur9cX3bxSvvYumiQFXG22HEHHsDH5r9qZ3484MEbsWL432EZ9r20_e4PqAF0Onh8YOG3xloxs7vTngvdV4vXp_AXjduTB2zh96Ha0bnqJHre6DeXZXT9Hn88Wn-TK7_PBuNa8us4YTIjLOGON1ci1ryOtcyKIVxY0E2RjKoaxlzXhel6QumWxE01IoC56bgjJNSEmBnaI3R91xqnfmpknmve7V6O1O-4Ny2qq_J4Pt1MbtVV4yzsoiCby6E_Du62RCVDsbGtP3ejBuCgpkmd5HQeYJffkPunWTH9J5ihIAVkjBZaLyI9V4F4I37b0ZIOpnmup3mqkX6phm2nvx5yX3W7_iS4A8Areuj8aHL_10a7zqjO5j9x_xH74jrXA</recordid><startdate>20180302</startdate><enddate>20180302</enddate><creator>Wang, Bei</creator><creator>Nie, Jiali</creator><creator>Wu, Lujin</creator><creator>Hu, Yangyang</creator><creator>Wen, Zheng</creator><creator>Dong, Lingli</creator><creator>Zou, Ming-Hui</creator><creator>Chen, Chen</creator><creator>Wang, Dao Wen</creator><general>American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180302</creationdate><title>AMPKα2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation</title><author>Wang, Bei ; Nie, Jiali ; Wu, Lujin ; Hu, Yangyang ; Wen, Zheng ; Dong, Lingli ; Zou, Ming-Hui ; Chen, Chen ; Wang, Dao Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4007-43334b7339b15b5796f76d919ce2418b9b345b80b839c7cf218645e623a008213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>AMP</topic><topic>AMP-activated protein kinase</topic><topic>Aorta</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Cardiomyocytes</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Kinases</topic><topic>Mitochondria</topic><topic>Mitophagy</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Parkin protein</topic><topic>Phagocytosis</topic><topic>Phenylephrine</topic><topic>Phosphorylation</topic><topic>PTEN protein</topic><topic>PTEN-induced putative kinase</topic><topic>Reactive oxygen species</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>siRNA</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Nie, Jiali</creatorcontrib><creatorcontrib>Wu, Lujin</creatorcontrib><creatorcontrib>Hu, Yangyang</creatorcontrib><creatorcontrib>Wen, Zheng</creatorcontrib><creatorcontrib>Dong, Lingli</creatorcontrib><creatorcontrib>Zou, Ming-Hui</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wang, Dao Wen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bei</au><au>Nie, Jiali</au><au>Wu, Lujin</au><au>Hu, Yangyang</au><au>Wen, Zheng</au><au>Dong, Lingli</au><au>Zou, Ming-Hui</au><au>Chen, Chen</au><au>Wang, Dao Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMPKα2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2018-03-02</date><risdate>2018</risdate><volume>122</volume><issue>5</issue><spage>712</spage><epage>729</epage><pages>712-729</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>RATIONALE:Mitochondrial dysfunction plays an important role in heart failure (HF). However, the molecular mechanisms regulating mitochondrial functions via selective mitochondrial autophagy (mitophagy) are poorly understood. OBJECTIVE:We sought to determine the role of AMPK (AMP-activated protein kinase) in selective mitophagy during HF. METHODS AND RESULTS:An isoform shift from AMPKα2 to AMPKα1 was observed in failing heart samples from HF patients and transverse aortic constriction–induced mice, accompanied by decreased mitophagy and mitochondrial function. The recombinant adeno-associated virus Serotype 9-mediated overexpression of AMPKα2 in mouse hearts prevented the development of transverse aortic constriction–induced chronic HF by increasing mitophagy and improving mitochondrial function. In contrast, AMPKα2 mutant mice exhibited an exacerbation of the early progression of transverse aortic constriction–induced HF via decreases in cardiac mitophagy. In isolated adult mouse cardiomyocytes, AMPKα2 overexpression mechanistically rescued the impairment of mitophagy after phenylephrine stimulation for 24 hours. Genetic knockdown of AMPKα2, but not AMPKα1, by short interfering RNA suppressed the early phase (6 hours) of phenylephrine-induced compensatory increases in mitophagy. Furthermore, AMPKα2 specifically interacted with phosphorylated PINK1 (PTEN-induced putative kinase 1) at Ser495 after phenylephrine stimulation. Subsequently, phosphorylated PINK1 recruited the E3 ubiquitin ligase, Parkin, to depolarized mitochondria, and then enhanced the role of the PINK1–Parkin–SQSTM1 (sequestosome-1) pathway involved in cardiac mitophagy. This increase in cardiac mitophagy was accompanied by the elimination of damaged mitochondria, improvement in mitochondrial function, decrease in reactive oxygen species production, and apoptosis of cardiomyocytes. Finally, Ala mutation of PINK1 at Ser495 partially suppressed AMPKα2 overexpression-induced mitophagy and improvement of mitochondrial function in phenylephrine-stimulated cardiomyocytes, whereas Asp (phosphorylation mimic) mutation promoted mitophagy after phenylephrine stimulation. CONCLUSIONS:In failing hearts, the dominant AMPKα isoform switched from AMPKα2 to AMPKα1, which accelerated HF. The results show that phosphorylation of Ser495 in PINK1 by AMPKα2 was essential for efficient mitophagy to prevent the progression of HF.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>29284690</pmid><doi>10.1161/CIRCRESAHA.117.312317</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2018-03, Vol.122 (5), p.712-729
issn 0009-7330
1524-4571
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5834386
source American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects AMP
AMP-activated protein kinase
Aorta
Apoptosis
Autophagy
Cardiomyocytes
Heart diseases
Heart failure
Kinases
Mitochondria
Mitophagy
Molecular modelling
Mutation
Parkin protein
Phagocytosis
Phenylephrine
Phosphorylation
PTEN protein
PTEN-induced putative kinase
Reactive oxygen species
Ribonucleic acid
RNA
siRNA
Ubiquitin
Ubiquitin-protein ligase
title AMPKα2 Protects Against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMPK%CE%B12%20Protects%20Against%20the%20Development%20of%20Heart%20Failure%20by%20Enhancing%20Mitophagy%20via%20PINK1%20Phosphorylation&rft.jtitle=Circulation%20research&rft.au=Wang,%20Bei&rft.date=2018-03-02&rft.volume=122&rft.issue=5&rft.spage=712&rft.epage=729&rft.pages=712-729&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.117.312317&rft_dat=%3Cproquest_pubme%3E1982842195%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011369749&rft_id=info:pmid/29284690&rfr_iscdi=true