Versatile Methodology for Glycosurfaces: Direct Ligation of Nonderivatized Reducing Saccharides to Poly(pentafluorophenyl acrylate) Grafted Surfaces via Hydrazide Conjugation

In this work, we report a convenient and versatile strategy for surface-grafted glycopolymer constructs with the goal of surface modification that controls the chemical presentation and grafting density of carbohydrate side chains. This approach employs a difunctional hydrazine linker, chemically mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-09, Vol.33 (35), p.8821-8828
Hauptverfasser: Chen, Li, Leman, Deborah, Williams, Caitlin R, Brooks, Karson, Krause, Duncan C, Locklin, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we report a convenient and versatile strategy for surface-grafted glycopolymer constructs with the goal of surface modification that controls the chemical presentation and grafting density of carbohydrate side chains. This approach employs a difunctional hydrazine linker, chemically modified to an active ester containing poly­(pentafluorophenyl acrylate) grafted scaffold, to conjugate a variety of saccharides through the reducing end. The successive conjugation steps are carried out under mild conditions and yield high surface densities of sugars, as high as 4.8 nmol·cm–2, capable of multivalency, with an intact structure and retained bioactivity. We also demonstrate that this glycosylated surface can bind specific lectins according to the structure of its pendant carbohydrate. To demonstrate bioactivity, this surface platform is used to study the binding events of a human respiratory tract pathogen, Mycoplasma pneumoniae, on surfaces conjugated with sialylated sugars.
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/acs.langmuir.7b00779