Role of autophagy in modulating post-maturation aging of mouse oocytes
Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes....
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2018-02, Vol.9 (3), p.308-12, Article 308 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 3 |
container_start_page | 308 |
container_title | Cell death & disease |
container_volume | 9 |
creator | Lin, Fei-Hu Zhang, Wei-Ling Li, Hong Tian, Xiao-Dan Zhang, Jie Li, Xiao Li, Chuan-Yong Tan, Jing-He |
description | Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis. |
doi_str_mv | 10.1038/s41419-018-0368-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5833823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007442001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d75c7c5a597763636267afea3d8b89cd7c72cc0f9e7619704bc8b035a9e36aed3</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMobqg_wBspeONNNV9tkhtBhlNhIIhehyxNa0fbzKQV9u89c1OnYAL5Os95Tw4vQqcEXxLM5FXkhBOVYiJTzHKZZntoTDEnKZdS7e-cR-gkxgWGwRimWX6IRlRxQTMlxmj65BuX-DIxQ--Xr6ZaJXWXtL4YGtPXXZUsfezT1vRDgLvvElOtXyGh9UOETG9XvYvH6KA0TXQn2_0IvUxvnyf36ezx7mFyM0stx7hPC5FZYTMDpUXOYNJcmNIZVsi5VLYQVlBrcamcyIkSmM-tnGOWGeVYblzBjtD1Rnc5zFtXWNf1wTR6GerWhJX2pta_I139qiv_rjPJmKQMBC62AsG_DS72uq2jdU1jOgcNaYqxUADmFNDzP-jCD6GD9j4pzmElQJENZYOPMbjy-zME67VRemOUBqP02iidQc7ZbhffGV-2AEA3QIRQV7nwU_p_1Q-c6J6D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007442001</pqid></control><display><type>article</type><title>Role of autophagy in modulating post-maturation aging of mouse oocytes</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Lin, Fei-Hu ; Zhang, Wei-Ling ; Li, Hong ; Tian, Xiao-Dan ; Zhang, Jie ; Li, Xiao ; Li, Chuan-Yong ; Tan, Jing-He</creator><creatorcontrib>Lin, Fei-Hu ; Zhang, Wei-Ling ; Li, Hong ; Tian, Xiao-Dan ; Zhang, Jie ; Li, Xiao ; Li, Chuan-Yong ; Tan, Jing-He</creatorcontrib><description>Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-018-0368-5</identifier><identifier>PMID: 29472597</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 13/51 ; 14/19 ; 82/1 ; 82/80 ; Aging ; Aging - metabolism ; Animals ; Antibodies ; Apoptosis ; Autophagy ; Biochemistry ; Biomedical and Life Sciences ; Calcium ; Caspase ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Caspase-3 ; Cell Biology ; Cell Culture ; Cortex ; Cytoplasm - genetics ; Cytoplasm - metabolism ; Female ; Immunology ; Life Sciences ; Lithium ; Lithium chloride ; Maturation ; Membrane potential ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Mitochondria ; Oocytes ; Oocytes - cytology ; Oocytes - metabolism ; Oxidative stress ; Phagocytosis ; Phagosomes ; Rapamycin</subject><ispartof>Cell death & disease, 2018-02, Vol.9 (3), p.308-12, Article 308</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d75c7c5a597763636267afea3d8b89cd7c72cc0f9e7619704bc8b035a9e36aed3</citedby><cites>FETCH-LOGICAL-c400t-d75c7c5a597763636267afea3d8b89cd7c72cc0f9e7619704bc8b035a9e36aed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833823/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833823/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29472597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Fei-Hu</creatorcontrib><creatorcontrib>Zhang, Wei-Ling</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Tian, Xiao-Dan</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Li, Chuan-Yong</creatorcontrib><creatorcontrib>Tan, Jing-He</creatorcontrib><title>Role of autophagy in modulating post-maturation aging of mouse oocytes</title><title>Cell death & disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis.</description><subject>13/2</subject><subject>13/51</subject><subject>14/19</subject><subject>82/1</subject><subject>82/80</subject><subject>Aging</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium</subject><subject>Caspase</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase-3</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cortex</subject><subject>Cytoplasm - genetics</subject><subject>Cytoplasm - metabolism</subject><subject>Female</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Lithium</subject><subject>Lithium chloride</subject><subject>Maturation</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Mitochondria</subject><subject>Oocytes</subject><subject>Oocytes - cytology</subject><subject>Oocytes - metabolism</subject><subject>Oxidative stress</subject><subject>Phagocytosis</subject><subject>Phagosomes</subject><subject>Rapamycin</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kV1LwzAUhoMobqg_wBspeONNNV9tkhtBhlNhIIhehyxNa0fbzKQV9u89c1OnYAL5Os95Tw4vQqcEXxLM5FXkhBOVYiJTzHKZZntoTDEnKZdS7e-cR-gkxgWGwRimWX6IRlRxQTMlxmj65BuX-DIxQ--Xr6ZaJXWXtL4YGtPXXZUsfezT1vRDgLvvElOtXyGh9UOETG9XvYvH6KA0TXQn2_0IvUxvnyf36ezx7mFyM0stx7hPC5FZYTMDpUXOYNJcmNIZVsi5VLYQVlBrcamcyIkSmM-tnGOWGeVYblzBjtD1Rnc5zFtXWNf1wTR6GerWhJX2pta_I139qiv_rjPJmKQMBC62AsG_DS72uq2jdU1jOgcNaYqxUADmFNDzP-jCD6GD9j4pzmElQJENZYOPMbjy-zME67VRemOUBqP02iidQc7ZbhffGV-2AEA3QIRQV7nwU_p_1Q-c6J6D</recordid><startdate>20180222</startdate><enddate>20180222</enddate><creator>Lin, Fei-Hu</creator><creator>Zhang, Wei-Ling</creator><creator>Li, Hong</creator><creator>Tian, Xiao-Dan</creator><creator>Zhang, Jie</creator><creator>Li, Xiao</creator><creator>Li, Chuan-Yong</creator><creator>Tan, Jing-He</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180222</creationdate><title>Role of autophagy in modulating post-maturation aging of mouse oocytes</title><author>Lin, Fei-Hu ; Zhang, Wei-Ling ; Li, Hong ; Tian, Xiao-Dan ; Zhang, Jie ; Li, Xiao ; Li, Chuan-Yong ; Tan, Jing-He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d75c7c5a597763636267afea3d8b89cd7c72cc0f9e7619704bc8b035a9e36aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/2</topic><topic>13/51</topic><topic>14/19</topic><topic>82/1</topic><topic>82/80</topic><topic>Aging</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium</topic><topic>Caspase</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase-3</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cortex</topic><topic>Cytoplasm - genetics</topic><topic>Cytoplasm - metabolism</topic><topic>Female</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Lithium</topic><topic>Lithium chloride</topic><topic>Maturation</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Mitochondria</topic><topic>Oocytes</topic><topic>Oocytes - cytology</topic><topic>Oocytes - metabolism</topic><topic>Oxidative stress</topic><topic>Phagocytosis</topic><topic>Phagosomes</topic><topic>Rapamycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Fei-Hu</creatorcontrib><creatorcontrib>Zhang, Wei-Ling</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Tian, Xiao-Dan</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Li, Chuan-Yong</creatorcontrib><creatorcontrib>Tan, Jing-He</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death & disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Fei-Hu</au><au>Zhang, Wei-Ling</au><au>Li, Hong</au><au>Tian, Xiao-Dan</au><au>Zhang, Jie</au><au>Li, Xiao</au><au>Li, Chuan-Yong</au><au>Tan, Jing-He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of autophagy in modulating post-maturation aging of mouse oocytes</atitle><jtitle>Cell death & disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2018-02-22</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><spage>308</spage><epage>12</epage><pages>308-12</pages><artnum>308</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29472597</pmid><doi>10.1038/s41419-018-0368-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-4889 |
ispartof | Cell death & disease, 2018-02, Vol.9 (3), p.308-12, Article 308 |
issn | 2041-4889 2041-4889 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5833823 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals |
subjects | 13/2 13/51 14/19 82/1 82/80 Aging Aging - metabolism Animals Antibodies Apoptosis Autophagy Biochemistry Biomedical and Life Sciences Calcium Caspase Caspase 3 - genetics Caspase 3 - metabolism Caspase-3 Cell Biology Cell Culture Cortex Cytoplasm - genetics Cytoplasm - metabolism Female Immunology Life Sciences Lithium Lithium chloride Maturation Membrane potential Mice Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Mitochondria Oocytes Oocytes - cytology Oocytes - metabolism Oxidative stress Phagocytosis Phagosomes Rapamycin |
title | Role of autophagy in modulating post-maturation aging of mouse oocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20autophagy%20in%20modulating%20post-maturation%20aging%20of%20mouse%20oocytes&rft.jtitle=Cell%20death%20&%20disease&rft.au=Lin,%20Fei-Hu&rft.date=2018-02-22&rft.volume=9&rft.issue=3&rft.spage=308&rft.epage=12&rft.pages=308-12&rft.artnum=308&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-018-0368-5&rft_dat=%3Cproquest_pubme%3E2007442001%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007442001&rft_id=info:pmid/29472597&rfr_iscdi=true |