Role of autophagy in modulating post-maturation aging of mouse oocytes

Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2018-02, Vol.9 (3), p.308-12, Article 308
Hauptverfasser: Lin, Fei-Hu, Zhang, Wei-Ling, Li, Hong, Tian, Xiao-Dan, Zhang, Jie, Li, Xiao, Li, Chuan-Yong, Tan, Jing-He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 3
container_start_page 308
container_title Cell death & disease
container_volume 9
creator Lin, Fei-Hu
Zhang, Wei-Ling
Li, Hong
Tian, Xiao-Dan
Zhang, Jie
Li, Xiao
Li, Chuan-Yong
Tan, Jing-He
description Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis.
doi_str_mv 10.1038/s41419-018-0368-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5833823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007442001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d75c7c5a597763636267afea3d8b89cd7c72cc0f9e7619704bc8b035a9e36aed3</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMobqg_wBspeONNNV9tkhtBhlNhIIhehyxNa0fbzKQV9u89c1OnYAL5Os95Tw4vQqcEXxLM5FXkhBOVYiJTzHKZZntoTDEnKZdS7e-cR-gkxgWGwRimWX6IRlRxQTMlxmj65BuX-DIxQ--Xr6ZaJXWXtL4YGtPXXZUsfezT1vRDgLvvElOtXyGh9UOETG9XvYvH6KA0TXQn2_0IvUxvnyf36ezx7mFyM0stx7hPC5FZYTMDpUXOYNJcmNIZVsi5VLYQVlBrcamcyIkSmM-tnGOWGeVYblzBjtD1Rnc5zFtXWNf1wTR6GerWhJX2pta_I139qiv_rjPJmKQMBC62AsG_DS72uq2jdU1jOgcNaYqxUADmFNDzP-jCD6GD9j4pzmElQJENZYOPMbjy-zME67VRemOUBqP02iidQc7ZbhffGV-2AEA3QIRQV7nwU_p_1Q-c6J6D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007442001</pqid></control><display><type>article</type><title>Role of autophagy in modulating post-maturation aging of mouse oocytes</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Lin, Fei-Hu ; Zhang, Wei-Ling ; Li, Hong ; Tian, Xiao-Dan ; Zhang, Jie ; Li, Xiao ; Li, Chuan-Yong ; Tan, Jing-He</creator><creatorcontrib>Lin, Fei-Hu ; Zhang, Wei-Ling ; Li, Hong ; Tian, Xiao-Dan ; Zhang, Jie ; Li, Xiao ; Li, Chuan-Yong ; Tan, Jing-He</creatorcontrib><description>Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-018-0368-5</identifier><identifier>PMID: 29472597</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 13/51 ; 14/19 ; 82/1 ; 82/80 ; Aging ; Aging - metabolism ; Animals ; Antibodies ; Apoptosis ; Autophagy ; Biochemistry ; Biomedical and Life Sciences ; Calcium ; Caspase ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Caspase-3 ; Cell Biology ; Cell Culture ; Cortex ; Cytoplasm - genetics ; Cytoplasm - metabolism ; Female ; Immunology ; Life Sciences ; Lithium ; Lithium chloride ; Maturation ; Membrane potential ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Mitochondria ; Oocytes ; Oocytes - cytology ; Oocytes - metabolism ; Oxidative stress ; Phagocytosis ; Phagosomes ; Rapamycin</subject><ispartof>Cell death &amp; disease, 2018-02, Vol.9 (3), p.308-12, Article 308</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d75c7c5a597763636267afea3d8b89cd7c72cc0f9e7619704bc8b035a9e36aed3</citedby><cites>FETCH-LOGICAL-c400t-d75c7c5a597763636267afea3d8b89cd7c72cc0f9e7619704bc8b035a9e36aed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833823/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833823/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29472597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Fei-Hu</creatorcontrib><creatorcontrib>Zhang, Wei-Ling</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Tian, Xiao-Dan</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Li, Chuan-Yong</creatorcontrib><creatorcontrib>Tan, Jing-He</creatorcontrib><title>Role of autophagy in modulating post-maturation aging of mouse oocytes</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis.</description><subject>13/2</subject><subject>13/51</subject><subject>14/19</subject><subject>82/1</subject><subject>82/80</subject><subject>Aging</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium</subject><subject>Caspase</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase-3</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cortex</subject><subject>Cytoplasm - genetics</subject><subject>Cytoplasm - metabolism</subject><subject>Female</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Lithium</subject><subject>Lithium chloride</subject><subject>Maturation</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Mitochondria</subject><subject>Oocytes</subject><subject>Oocytes - cytology</subject><subject>Oocytes - metabolism</subject><subject>Oxidative stress</subject><subject>Phagocytosis</subject><subject>Phagosomes</subject><subject>Rapamycin</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kV1LwzAUhoMobqg_wBspeONNNV9tkhtBhlNhIIhehyxNa0fbzKQV9u89c1OnYAL5Os95Tw4vQqcEXxLM5FXkhBOVYiJTzHKZZntoTDEnKZdS7e-cR-gkxgWGwRimWX6IRlRxQTMlxmj65BuX-DIxQ--Xr6ZaJXWXtL4YGtPXXZUsfezT1vRDgLvvElOtXyGh9UOETG9XvYvH6KA0TXQn2_0IvUxvnyf36ezx7mFyM0stx7hPC5FZYTMDpUXOYNJcmNIZVsi5VLYQVlBrcamcyIkSmM-tnGOWGeVYblzBjtD1Rnc5zFtXWNf1wTR6GerWhJX2pta_I139qiv_rjPJmKQMBC62AsG_DS72uq2jdU1jOgcNaYqxUADmFNDzP-jCD6GD9j4pzmElQJENZYOPMbjy-zME67VRemOUBqP02iidQc7ZbhffGV-2AEA3QIRQV7nwU_p_1Q-c6J6D</recordid><startdate>20180222</startdate><enddate>20180222</enddate><creator>Lin, Fei-Hu</creator><creator>Zhang, Wei-Ling</creator><creator>Li, Hong</creator><creator>Tian, Xiao-Dan</creator><creator>Zhang, Jie</creator><creator>Li, Xiao</creator><creator>Li, Chuan-Yong</creator><creator>Tan, Jing-He</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180222</creationdate><title>Role of autophagy in modulating post-maturation aging of mouse oocytes</title><author>Lin, Fei-Hu ; Zhang, Wei-Ling ; Li, Hong ; Tian, Xiao-Dan ; Zhang, Jie ; Li, Xiao ; Li, Chuan-Yong ; Tan, Jing-He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d75c7c5a597763636267afea3d8b89cd7c72cc0f9e7619704bc8b035a9e36aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/2</topic><topic>13/51</topic><topic>14/19</topic><topic>82/1</topic><topic>82/80</topic><topic>Aging</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium</topic><topic>Caspase</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase-3</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cortex</topic><topic>Cytoplasm - genetics</topic><topic>Cytoplasm - metabolism</topic><topic>Female</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Lithium</topic><topic>Lithium chloride</topic><topic>Maturation</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Mitochondria</topic><topic>Oocytes</topic><topic>Oocytes - cytology</topic><topic>Oocytes - metabolism</topic><topic>Oxidative stress</topic><topic>Phagocytosis</topic><topic>Phagosomes</topic><topic>Rapamycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Fei-Hu</creatorcontrib><creatorcontrib>Zhang, Wei-Ling</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Tian, Xiao-Dan</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Li, Chuan-Yong</creatorcontrib><creatorcontrib>Tan, Jing-He</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Fei-Hu</au><au>Zhang, Wei-Ling</au><au>Li, Hong</au><au>Tian, Xiao-Dan</au><au>Zhang, Jie</au><au>Li, Xiao</au><au>Li, Chuan-Yong</au><au>Tan, Jing-He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of autophagy in modulating post-maturation aging of mouse oocytes</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2018-02-22</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><spage>308</spage><epage>12</epage><pages>308-12</pages><artnum>308</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Mechanisms for post-maturation oocyte aging (PMOA) are not fully understood, and whether autophagy plays any role in PMOA is unknown. To explore the role of autophagy in PMOA, expression of autophagosomes and effects of the autophagy (macro-autophagy) activity on PMOA were observed in mouse oocytes. Oocyte activation rates and active caspase-3 levels increased continuously from 0 to 18 h of in vitro aging. While levels of microtubule-associated protein light chain 3 (LC3)-II increased up to 12 h and decreased thereafter, contents of p62 decreased from 0 to 12 h and then elevated to basal level by 18 h. However, the LC3-II/I ratio remained unchanged following aging in different media or for different times. During in vitro aging up to 12 h, upregulating autophagy with rapamycin or lithium chloride decreased activation susceptibility, cytoplasmic calcium, p62 contents, oxidative stress, caspase-3 activation and cytoplasmic fragmentation while increasing developmental competence, LC3-II contents, LC3-II/I ratio, mitochondrial membrane potential, spindle/chromosome integrity and normal cortical granule distribution. Downregulating autophagy with 3-methyladenine (3-MA) produced opposite effects on all these parameters except cytoplasmic fragmentation. After 12 h of aging culture, however, regulating autophagy with either rapamycin/lithium chloride or 3-MA had no impact on oocyte activation susceptibility. It is concluded that autophagy plays an important role in regulating PMOA. Thus, during the early stage of PMOA, autophagy increases as an adaptive response to prevent further apoptosis, but by the late stage of PMOA, the activation of more caspases blocks the autophagic process leading to severer apoptosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29472597</pmid><doi>10.1038/s41419-018-0368-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2018-02, Vol.9 (3), p.308-12, Article 308
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5833823
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals
subjects 13/2
13/51
14/19
82/1
82/80
Aging
Aging - metabolism
Animals
Antibodies
Apoptosis
Autophagy
Biochemistry
Biomedical and Life Sciences
Calcium
Caspase
Caspase 3 - genetics
Caspase 3 - metabolism
Caspase-3
Cell Biology
Cell Culture
Cortex
Cytoplasm - genetics
Cytoplasm - metabolism
Female
Immunology
Life Sciences
Lithium
Lithium chloride
Maturation
Membrane potential
Mice
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Mitochondria
Oocytes
Oocytes - cytology
Oocytes - metabolism
Oxidative stress
Phagocytosis
Phagosomes
Rapamycin
title Role of autophagy in modulating post-maturation aging of mouse oocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20autophagy%20in%20modulating%20post-maturation%20aging%20of%20mouse%20oocytes&rft.jtitle=Cell%20death%20&%20disease&rft.au=Lin,%20Fei-Hu&rft.date=2018-02-22&rft.volume=9&rft.issue=3&rft.spage=308&rft.epage=12&rft.pages=308-12&rft.artnum=308&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-018-0368-5&rft_dat=%3Cproquest_pubme%3E2007442001%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007442001&rft_id=info:pmid/29472597&rfr_iscdi=true