Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer

Sterol regulatory element-binding proteins (SREBPs) belong to a family of transcription factors that regulate the expression of genes required for the synthesis of fatty acids and cholesterol. Three SREBP isoforms, SREBP1a, SREBP1c, and SREBP2, have been identified in mammalian cells. SREBP1a and SR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2018-02, Vol.9 (3), p.265-14, Article 265
Hauptverfasser: Wen, Yang-An, Xiong, Xiaopeng, Zaytseva, Yekaterina Y., Napier, Dana L., Vallee, Emma, Li, Austin T., Wang, Chi, Weiss, Heidi L., Evers, B. Mark, Gao, Tianyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 3
container_start_page 265
container_title Cell death & disease
container_volume 9
creator Wen, Yang-An
Xiong, Xiaopeng
Zaytseva, Yekaterina Y.
Napier, Dana L.
Vallee, Emma
Li, Austin T.
Wang, Chi
Weiss, Heidi L.
Evers, B. Mark
Gao, Tianyan
description Sterol regulatory element-binding proteins (SREBPs) belong to a family of transcription factors that regulate the expression of genes required for the synthesis of fatty acids and cholesterol. Three SREBP isoforms, SREBP1a, SREBP1c, and SREBP2, have been identified in mammalian cells. SREBP1a and SREBP1c are derived from a single gene through the use of alternative transcription start sites. Here we investigated the role of SREBP-mediated lipogenesis in regulating tumor growth and initiation in colon cancer. Knockdown of either SREBP1 or SREBP2 decreased levels of fatty acids as a result of decreased expression of SREBP target genes required for lipid biosynthesis in colon cancer cells. Bioenergetic analysis revealed that silencing SREBP1 or SREBP2 expression reduced the mitochondrial respiration, glycolysis, as well as fatty acid oxidation indicating an alteration in cellular metabolism. Consequently, the rate of cell proliferation and the ability of cancer cells to form tumor spheroids in suspension culture were significantly decreased. Similar results were obtained in colon cancer cells in which the proteolytic activation of SREBP was blocked. Importantly, knockdown of either SREBP1 or SREBP2 inhibited xenograft tumor growth in vivo and decreased the expression of genes associated with cancer stem cells. Taken together, our findings establish the molecular basis of SREBP-dependent metabolic regulation and provide a rationale for targeting lipid biosynthesis as a promising approach in colon cancer treatment.
doi_str_mv 10.1038/s41419-018-0330-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5833501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002472940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-711249b82d63a9dedf641d9a9c6f1facabcca96018490b4d9a42c7148af0115e3</originalsourceid><addsrcrecordid>eNp1kU9PHSEUxYmpUWP9AN0YEjfdTAsMwxs2TazaP4mJxrZrwjDMexgGXoHR-O29k1Frm5QNJPd3z-Xcg9A7Sj5QUrcfM6ecyorQtiJ1TSqxgw4Y4bTibSvfvHrvo6OcbwkcwFgj9tA-k5zLppEHyJ_H-5DsevK6uBhwHPCPm4vP19iFjetcybhMY0x4neJ92WAdeqi44ha6e8DaF5tcWGNjvQeVhEdbdBe9yyOg2EQPoNHB2PQW7Q7aZ3v0dB-iX18ufp59qy6vvn4_O72sDBeiVCtKGZddy3pRa9nbfhCc9lJLIwY6aKM7Y7QU4JxL0nGocGZWlLd6IJQ2tj5Enxbd7dSNtjc2lKS92iY36vSgonbq70pwG7WOd6pp67ohFATePwmk-HuyuajR5dmgDjZOWTHYJeGEshrQk3_Q2zilAPZmivEV7JoARRfKpJhzssPLZyhRc5xqiVOBKTXnpAT0HL928dLxHB4AbAHydk7Apj-j_6_6CA0trHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002472940</pqid></control><display><type>article</type><title>Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Wen, Yang-An ; Xiong, Xiaopeng ; Zaytseva, Yekaterina Y. ; Napier, Dana L. ; Vallee, Emma ; Li, Austin T. ; Wang, Chi ; Weiss, Heidi L. ; Evers, B. Mark ; Gao, Tianyan</creator><creatorcontrib>Wen, Yang-An ; Xiong, Xiaopeng ; Zaytseva, Yekaterina Y. ; Napier, Dana L. ; Vallee, Emma ; Li, Austin T. ; Wang, Chi ; Weiss, Heidi L. ; Evers, B. Mark ; Gao, Tianyan</creatorcontrib><description>Sterol regulatory element-binding proteins (SREBPs) belong to a family of transcription factors that regulate the expression of genes required for the synthesis of fatty acids and cholesterol. Three SREBP isoforms, SREBP1a, SREBP1c, and SREBP2, have been identified in mammalian cells. SREBP1a and SREBP1c are derived from a single gene through the use of alternative transcription start sites. Here we investigated the role of SREBP-mediated lipogenesis in regulating tumor growth and initiation in colon cancer. Knockdown of either SREBP1 or SREBP2 decreased levels of fatty acids as a result of decreased expression of SREBP target genes required for lipid biosynthesis in colon cancer cells. Bioenergetic analysis revealed that silencing SREBP1 or SREBP2 expression reduced the mitochondrial respiration, glycolysis, as well as fatty acid oxidation indicating an alteration in cellular metabolism. Consequently, the rate of cell proliferation and the ability of cancer cells to form tumor spheroids in suspension culture were significantly decreased. Similar results were obtained in colon cancer cells in which the proteolytic activation of SREBP was blocked. Importantly, knockdown of either SREBP1 or SREBP2 inhibited xenograft tumor growth in vivo and decreased the expression of genes associated with cancer stem cells. Taken together, our findings establish the molecular basis of SREBP-dependent metabolic regulation and provide a rationale for targeting lipid biosynthesis as a promising approach in colon cancer treatment.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-018-0330-6</identifier><identifier>PMID: 29449559</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/89 ; 38 ; 38/77 ; 96 ; 96/106 ; Animals ; Antibodies ; Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Cell Biology ; Cell Culture ; Cell Proliferation ; Cholesterol ; Colon cancer ; Colonic Neoplasms - genetics ; Colonic Neoplasms - metabolism ; Colonic Neoplasms - pathology ; Colorectal cancer ; Down-Regulation ; Electron transport ; Energy Metabolism ; Fatty acids ; Female ; Gene Expression Regulation, Neoplastic ; Gene regulation ; Glycolysis ; HCT116 Cells ; Humans ; Immunology ; Isoforms ; Life Sciences ; Lipogenesis ; Male ; Mammalian cells ; Metabolism ; Mice, Inbred NOD ; Mice, SCID ; Mitochondria ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Oxidation ; Proteolysis ; Regulatory sequences ; Signal Transduction ; Spheroids ; Spheroids, Cellular ; Stem cells ; Sterol Regulatory Element Binding Protein 1 - genetics ; Sterol Regulatory Element Binding Protein 1 - metabolism ; Sterol Regulatory Element Binding Protein 2 - genetics ; Sterol Regulatory Element Binding Protein 2 - metabolism ; Sterol regulatory element-binding protein ; Suspension culture ; Transcription factors ; Tumor Burden ; Xenografts</subject><ispartof>Cell death &amp; disease, 2018-02, Vol.9 (3), p.265-14, Article 265</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-711249b82d63a9dedf641d9a9c6f1facabcca96018490b4d9a42c7148af0115e3</citedby><cites>FETCH-LOGICAL-c466t-711249b82d63a9dedf641d9a9c6f1facabcca96018490b4d9a42c7148af0115e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833501/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833501/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29449559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Yang-An</creatorcontrib><creatorcontrib>Xiong, Xiaopeng</creatorcontrib><creatorcontrib>Zaytseva, Yekaterina Y.</creatorcontrib><creatorcontrib>Napier, Dana L.</creatorcontrib><creatorcontrib>Vallee, Emma</creatorcontrib><creatorcontrib>Li, Austin T.</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><creatorcontrib>Weiss, Heidi L.</creatorcontrib><creatorcontrib>Evers, B. Mark</creatorcontrib><creatorcontrib>Gao, Tianyan</creatorcontrib><title>Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Sterol regulatory element-binding proteins (SREBPs) belong to a family of transcription factors that regulate the expression of genes required for the synthesis of fatty acids and cholesterol. Three SREBP isoforms, SREBP1a, SREBP1c, and SREBP2, have been identified in mammalian cells. SREBP1a and SREBP1c are derived from a single gene through the use of alternative transcription start sites. Here we investigated the role of SREBP-mediated lipogenesis in regulating tumor growth and initiation in colon cancer. Knockdown of either SREBP1 or SREBP2 decreased levels of fatty acids as a result of decreased expression of SREBP target genes required for lipid biosynthesis in colon cancer cells. Bioenergetic analysis revealed that silencing SREBP1 or SREBP2 expression reduced the mitochondrial respiration, glycolysis, as well as fatty acid oxidation indicating an alteration in cellular metabolism. Consequently, the rate of cell proliferation and the ability of cancer cells to form tumor spheroids in suspension culture were significantly decreased. Similar results were obtained in colon cancer cells in which the proteolytic activation of SREBP was blocked. Importantly, knockdown of either SREBP1 or SREBP2 inhibited xenograft tumor growth in vivo and decreased the expression of genes associated with cancer stem cells. Taken together, our findings establish the molecular basis of SREBP-dependent metabolic regulation and provide a rationale for targeting lipid biosynthesis as a promising approach in colon cancer treatment.</description><subject>13/1</subject><subject>13/89</subject><subject>38</subject><subject>38/77</subject><subject>96</subject><subject>96/106</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Proliferation</subject><subject>Cholesterol</subject><subject>Colon cancer</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colonic Neoplasms - metabolism</subject><subject>Colonic Neoplasms - pathology</subject><subject>Colorectal cancer</subject><subject>Down-Regulation</subject><subject>Electron transport</subject><subject>Energy Metabolism</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene regulation</subject><subject>Glycolysis</subject><subject>HCT116 Cells</subject><subject>Humans</subject><subject>Immunology</subject><subject>Isoforms</subject><subject>Life Sciences</subject><subject>Lipogenesis</subject><subject>Male</subject><subject>Mammalian cells</subject><subject>Metabolism</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Mitochondria</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Oxidation</subject><subject>Proteolysis</subject><subject>Regulatory sequences</subject><subject>Signal Transduction</subject><subject>Spheroids</subject><subject>Spheroids, Cellular</subject><subject>Stem cells</subject><subject>Sterol Regulatory Element Binding Protein 1 - genetics</subject><subject>Sterol Regulatory Element Binding Protein 1 - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 2 - genetics</subject><subject>Sterol Regulatory Element Binding Protein 2 - metabolism</subject><subject>Sterol regulatory element-binding protein</subject><subject>Suspension culture</subject><subject>Transcription factors</subject><subject>Tumor Burden</subject><subject>Xenografts</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9PHSEUxYmpUWP9AN0YEjfdTAsMwxs2TazaP4mJxrZrwjDMexgGXoHR-O29k1Frm5QNJPd3z-Xcg9A7Sj5QUrcfM6ecyorQtiJ1TSqxgw4Y4bTibSvfvHrvo6OcbwkcwFgj9tA-k5zLppEHyJ_H-5DsevK6uBhwHPCPm4vP19iFjetcybhMY0x4neJ92WAdeqi44ha6e8DaF5tcWGNjvQeVhEdbdBe9yyOg2EQPoNHB2PQW7Q7aZ3v0dB-iX18ufp59qy6vvn4_O72sDBeiVCtKGZddy3pRa9nbfhCc9lJLIwY6aKM7Y7QU4JxL0nGocGZWlLd6IJQ2tj5Enxbd7dSNtjc2lKS92iY36vSgonbq70pwG7WOd6pp67ohFATePwmk-HuyuajR5dmgDjZOWTHYJeGEshrQk3_Q2zilAPZmivEV7JoARRfKpJhzssPLZyhRc5xqiVOBKTXnpAT0HL928dLxHB4AbAHydk7Apj-j_6_6CA0trHQ</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Wen, Yang-An</creator><creator>Xiong, Xiaopeng</creator><creator>Zaytseva, Yekaterina Y.</creator><creator>Napier, Dana L.</creator><creator>Vallee, Emma</creator><creator>Li, Austin T.</creator><creator>Wang, Chi</creator><creator>Weiss, Heidi L.</creator><creator>Evers, B. Mark</creator><creator>Gao, Tianyan</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180215</creationdate><title>Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer</title><author>Wen, Yang-An ; Xiong, Xiaopeng ; Zaytseva, Yekaterina Y. ; Napier, Dana L. ; Vallee, Emma ; Li, Austin T. ; Wang, Chi ; Weiss, Heidi L. ; Evers, B. Mark ; Gao, Tianyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-711249b82d63a9dedf641d9a9c6f1facabcca96018490b4d9a42c7148af0115e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/89</topic><topic>38</topic><topic>38/77</topic><topic>96</topic><topic>96/106</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Proliferation</topic><topic>Cholesterol</topic><topic>Colon cancer</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colonic Neoplasms - metabolism</topic><topic>Colonic Neoplasms - pathology</topic><topic>Colorectal cancer</topic><topic>Down-Regulation</topic><topic>Electron transport</topic><topic>Energy Metabolism</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene regulation</topic><topic>Glycolysis</topic><topic>HCT116 Cells</topic><topic>Humans</topic><topic>Immunology</topic><topic>Isoforms</topic><topic>Life Sciences</topic><topic>Lipogenesis</topic><topic>Male</topic><topic>Mammalian cells</topic><topic>Metabolism</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Mitochondria</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Oxidation</topic><topic>Proteolysis</topic><topic>Regulatory sequences</topic><topic>Signal Transduction</topic><topic>Spheroids</topic><topic>Spheroids, Cellular</topic><topic>Stem cells</topic><topic>Sterol Regulatory Element Binding Protein 1 - genetics</topic><topic>Sterol Regulatory Element Binding Protein 1 - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 2 - genetics</topic><topic>Sterol Regulatory Element Binding Protein 2 - metabolism</topic><topic>Sterol regulatory element-binding protein</topic><topic>Suspension culture</topic><topic>Transcription factors</topic><topic>Tumor Burden</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Yang-An</creatorcontrib><creatorcontrib>Xiong, Xiaopeng</creatorcontrib><creatorcontrib>Zaytseva, Yekaterina Y.</creatorcontrib><creatorcontrib>Napier, Dana L.</creatorcontrib><creatorcontrib>Vallee, Emma</creatorcontrib><creatorcontrib>Li, Austin T.</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><creatorcontrib>Weiss, Heidi L.</creatorcontrib><creatorcontrib>Evers, B. Mark</creatorcontrib><creatorcontrib>Gao, Tianyan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Yang-An</au><au>Xiong, Xiaopeng</au><au>Zaytseva, Yekaterina Y.</au><au>Napier, Dana L.</au><au>Vallee, Emma</au><au>Li, Austin T.</au><au>Wang, Chi</au><au>Weiss, Heidi L.</au><au>Evers, B. Mark</au><au>Gao, Tianyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2018-02-15</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><spage>265</spage><epage>14</epage><pages>265-14</pages><artnum>265</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Sterol regulatory element-binding proteins (SREBPs) belong to a family of transcription factors that regulate the expression of genes required for the synthesis of fatty acids and cholesterol. Three SREBP isoforms, SREBP1a, SREBP1c, and SREBP2, have been identified in mammalian cells. SREBP1a and SREBP1c are derived from a single gene through the use of alternative transcription start sites. Here we investigated the role of SREBP-mediated lipogenesis in regulating tumor growth and initiation in colon cancer. Knockdown of either SREBP1 or SREBP2 decreased levels of fatty acids as a result of decreased expression of SREBP target genes required for lipid biosynthesis in colon cancer cells. Bioenergetic analysis revealed that silencing SREBP1 or SREBP2 expression reduced the mitochondrial respiration, glycolysis, as well as fatty acid oxidation indicating an alteration in cellular metabolism. Consequently, the rate of cell proliferation and the ability of cancer cells to form tumor spheroids in suspension culture were significantly decreased. Similar results were obtained in colon cancer cells in which the proteolytic activation of SREBP was blocked. Importantly, knockdown of either SREBP1 or SREBP2 inhibited xenograft tumor growth in vivo and decreased the expression of genes associated with cancer stem cells. Taken together, our findings establish the molecular basis of SREBP-dependent metabolic regulation and provide a rationale for targeting lipid biosynthesis as a promising approach in colon cancer treatment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29449559</pmid><doi>10.1038/s41419-018-0330-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2018-02, Vol.9 (3), p.265-14, Article 265
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5833501
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects 13/1
13/89
38
38/77
96
96/106
Animals
Antibodies
Biochemistry
Biomedical and Life Sciences
Biosynthesis
Cell Biology
Cell Culture
Cell Proliferation
Cholesterol
Colon cancer
Colonic Neoplasms - genetics
Colonic Neoplasms - metabolism
Colonic Neoplasms - pathology
Colorectal cancer
Down-Regulation
Electron transport
Energy Metabolism
Fatty acids
Female
Gene Expression Regulation, Neoplastic
Gene regulation
Glycolysis
HCT116 Cells
Humans
Immunology
Isoforms
Life Sciences
Lipogenesis
Male
Mammalian cells
Metabolism
Mice, Inbred NOD
Mice, SCID
Mitochondria
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Oxidation
Proteolysis
Regulatory sequences
Signal Transduction
Spheroids
Spheroids, Cellular
Stem cells
Sterol Regulatory Element Binding Protein 1 - genetics
Sterol Regulatory Element Binding Protein 1 - metabolism
Sterol Regulatory Element Binding Protein 2 - genetics
Sterol Regulatory Element Binding Protein 2 - metabolism
Sterol regulatory element-binding protein
Suspension culture
Transcription factors
Tumor Burden
Xenografts
title Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulation%20of%20SREBP%20inhibits%20tumor%20growth%20and%20initiation%20by%20altering%20cellular%20metabolism%20in%20colon%20cancer&rft.jtitle=Cell%20death%20&%20disease&rft.au=Wen,%20Yang-An&rft.date=2018-02-15&rft.volume=9&rft.issue=3&rft.spage=265&rft.epage=14&rft.pages=265-14&rft.artnum=265&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-018-0330-6&rft_dat=%3Cproquest_pubme%3E2002472940%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002472940&rft_id=info:pmid/29449559&rfr_iscdi=true