EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy

The epidermal growth factor receptor (EGFR) pathway and Hippo signaling play an important role in the carcinogenesis of hepatocellular carcinoma (HCC). However, the crosstalk between these two pathways and its implications in targeted therapy remains unclear. We found that the activated EGFR signali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2018-02, Vol.9 (3), p.269-12, Article 269
Hauptverfasser: Xia, Hongwei, Dai, Xinyu, Yu, Huangfei, Zhou, Sheng, Fan, Zhenghai, Wei, Guoqing, Tang, Qiulin, Gong, Qiyong, Bi, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 3
container_start_page 269
container_title Cell death & disease
container_volume 9
creator Xia, Hongwei
Dai, Xinyu
Yu, Huangfei
Zhou, Sheng
Fan, Zhenghai
Wei, Guoqing
Tang, Qiulin
Gong, Qiyong
Bi, Feng
description The epidermal growth factor receptor (EGFR) pathway and Hippo signaling play an important role in the carcinogenesis of hepatocellular carcinoma (HCC). However, the crosstalk between these two pathways and its implications in targeted therapy remains unclear. We found that the activated EGFR signaling could bypass RhoA to promote the expression of YAP(Yes-associated protein), the core effector of the Hippo signaling, and its downstream target Cyr61. Further studies indicated that EGFR signaling mainly acted through the PI3K-PDK1 (Phosphoinositide 3-kinase-Phosphoinositide-dependent kinase-1) pathway to activate YAP, but not the AKT and MAPK pathways. While YAP knockdown hardly affected the EGFR signaling. In addition, EGF could promote the proliferation of HCC cells in a YAP-independent manner. Combined targeting of YAP and EGFR signaling by simvastatin and the EGFR signaling inhibitors, including the EGFR tyrosine kinase inhibitor (TKI) gefitinib, the RAF inhibitor sorafenib and the MEK inhibitor trametinib, presented strong synergistic cytotoxicities in HCC cells. Therefore, the EGFR-PI3K-PDK1 pathway could activate the YAP signaling, and the activated EGFR signaling could promote the HCC cell growth in a YAP-independent manner. Combined use of FDA-approved inhibitors to simultaneously target YAP and EGFR signaling presented several promising therapeutic approaches for HCC treatment.
doi_str_mv 10.1038/s41419-018-0302-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5833379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002473679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-a3445c7995cbb09a88ec864c6da8b7b7202a78c60197a93ebb403b2a583458363</originalsourceid><addsrcrecordid>eNp1kU9rHSEUxaW0NCHNB-imCF3b6Og42kUh5F9DAn2UZpGV3PGZGcOMM1Vfm7ftJ4-vL02TRQTxwv2dcy8ehN4z-olRrg6SYIJpQpkilNOK3L1CuxUVjAil9Osn9Q7aT-mWlsMLV8u3aKfSQmgp6l305-Ts9DtZnPMLsji-YHiG3P-GNY6uWw2QXcLXhwucfBdg8KHDPuDeFWiybhgKEbGFaH2YRviMc-_w6GwPwacRQ1hinxP24zx4C9lPIW30GWLnsltu8Ajz-h16cwNDcvsP7x66Oj35cfSVXH47Oz86vCRWSJkJcCFq22hd27alGpRyVklh5RJU27RNRStolJWU6QY0d20rKG8rqBUX5Uq-h75sfedVO7qldSFHGMwc_QhxbSbw5nkn-N500y9T1Jw3uhh8fDCI08-VS9ncTqtYPiaZitJKNFz-pdiWsnFKKbqbxwmMmk1yZpucKcmZTXLmrmg-PF3tUfEvpwJUWyCVVuhc_D_6Zdd7xXelhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002473679</pqid></control><display><type>article</type><title>EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Xia, Hongwei ; Dai, Xinyu ; Yu, Huangfei ; Zhou, Sheng ; Fan, Zhenghai ; Wei, Guoqing ; Tang, Qiulin ; Gong, Qiyong ; Bi, Feng</creator><creatorcontrib>Xia, Hongwei ; Dai, Xinyu ; Yu, Huangfei ; Zhou, Sheng ; Fan, Zhenghai ; Wei, Guoqing ; Tang, Qiulin ; Gong, Qiyong ; Bi, Feng</creatorcontrib><description>The epidermal growth factor receptor (EGFR) pathway and Hippo signaling play an important role in the carcinogenesis of hepatocellular carcinoma (HCC). However, the crosstalk between these two pathways and its implications in targeted therapy remains unclear. We found that the activated EGFR signaling could bypass RhoA to promote the expression of YAP(Yes-associated protein), the core effector of the Hippo signaling, and its downstream target Cyr61. Further studies indicated that EGFR signaling mainly acted through the PI3K-PDK1 (Phosphoinositide 3-kinase-Phosphoinositide-dependent kinase-1) pathway to activate YAP, but not the AKT and MAPK pathways. While YAP knockdown hardly affected the EGFR signaling. In addition, EGF could promote the proliferation of HCC cells in a YAP-independent manner. Combined targeting of YAP and EGFR signaling by simvastatin and the EGFR signaling inhibitors, including the EGFR tyrosine kinase inhibitor (TKI) gefitinib, the RAF inhibitor sorafenib and the MEK inhibitor trametinib, presented strong synergistic cytotoxicities in HCC cells. Therefore, the EGFR-PI3K-PDK1 pathway could activate the YAP signaling, and the activated EGFR signaling could promote the HCC cell growth in a YAP-independent manner. Combined use of FDA-approved inhibitors to simultaneously target YAP and EGFR signaling presented several promising therapeutic approaches for HCC treatment.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-018-0302-x</identifier><identifier>PMID: 29449645</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 13/1 ; 13/2 ; 13/31 ; 13/89 ; 13/95 ; 3-Phosphoinositide-Dependent Protein Kinases - metabolism ; 96/95 ; Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; AKT protein ; Antibodies ; Antineoplastic Combined Chemotherapy Protocols - pharmacology ; Biochemistry ; Biomedical and Life Sciences ; Carcinogenesis ; Carcinoma, Hepatocellular - drug therapy ; Carcinoma, Hepatocellular - enzymology ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - pathology ; Cell Biology ; Cell Culture ; Cell proliferation ; Cell Proliferation - drug effects ; CYR61 protein ; Enzyme inhibitors ; Epidermal growth factor ; Epidermal growth factor receptors ; ErbB Receptors - antagonists &amp; inhibitors ; ErbB Receptors - metabolism ; Gefitinib ; Gefitinib - pharmacology ; Gene Expression Regulation, Neoplastic ; Hep G2 Cells ; Hepatocellular carcinoma ; Humans ; Immunology ; Life Sciences ; Liver cancer ; Liver Neoplasms - drug therapy ; Liver Neoplasms - enzymology ; Liver Neoplasms - genetics ; Liver Neoplasms - pathology ; MAP kinase ; MEK inhibitors ; Molecular Targeted Therapy ; Phosphatidylinositol 3-Kinase - metabolism ; Protein expression ; Protein Kinase Inhibitors - pharmacology ; Protein-tyrosine kinase ; Pyridones - pharmacology ; Pyrimidinones - pharmacology ; Raf protein ; RhoA protein ; Signal transduction ; Signal Transduction - drug effects ; Simvastatin ; Simvastatin - pharmacology ; Sorafenib - pharmacology ; Transcription Factors - antagonists &amp; inhibitors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Yes-associated protein</subject><ispartof>Cell death &amp; disease, 2018-02, Vol.9 (3), p.269-12, Article 269</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-a3445c7995cbb09a88ec864c6da8b7b7202a78c60197a93ebb403b2a583458363</citedby><cites>FETCH-LOGICAL-c466t-a3445c7995cbb09a88ec864c6da8b7b7202a78c60197a93ebb403b2a583458363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833379/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833379/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29449645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Hongwei</creatorcontrib><creatorcontrib>Dai, Xinyu</creatorcontrib><creatorcontrib>Yu, Huangfei</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Fan, Zhenghai</creatorcontrib><creatorcontrib>Wei, Guoqing</creatorcontrib><creatorcontrib>Tang, Qiulin</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Bi, Feng</creatorcontrib><title>EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>The epidermal growth factor receptor (EGFR) pathway and Hippo signaling play an important role in the carcinogenesis of hepatocellular carcinoma (HCC). However, the crosstalk between these two pathways and its implications in targeted therapy remains unclear. We found that the activated EGFR signaling could bypass RhoA to promote the expression of YAP(Yes-associated protein), the core effector of the Hippo signaling, and its downstream target Cyr61. Further studies indicated that EGFR signaling mainly acted through the PI3K-PDK1 (Phosphoinositide 3-kinase-Phosphoinositide-dependent kinase-1) pathway to activate YAP, but not the AKT and MAPK pathways. While YAP knockdown hardly affected the EGFR signaling. In addition, EGF could promote the proliferation of HCC cells in a YAP-independent manner. Combined targeting of YAP and EGFR signaling by simvastatin and the EGFR signaling inhibitors, including the EGFR tyrosine kinase inhibitor (TKI) gefitinib, the RAF inhibitor sorafenib and the MEK inhibitor trametinib, presented strong synergistic cytotoxicities in HCC cells. Therefore, the EGFR-PI3K-PDK1 pathway could activate the YAP signaling, and the activated EGFR signaling could promote the HCC cell growth in a YAP-independent manner. Combined use of FDA-approved inhibitors to simultaneously target YAP and EGFR signaling presented several promising therapeutic approaches for HCC treatment.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>13/1</subject><subject>13/2</subject><subject>13/31</subject><subject>13/89</subject><subject>13/95</subject><subject>3-Phosphoinositide-Dependent Protein Kinases - metabolism</subject><subject>96/95</subject><subject>Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>AKT protein</subject><subject>Antibodies</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carcinogenesis</subject><subject>Carcinoma, Hepatocellular - drug therapy</subject><subject>Carcinoma, Hepatocellular - enzymology</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>CYR61 protein</subject><subject>Enzyme inhibitors</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB Receptors - antagonists &amp; inhibitors</subject><subject>ErbB Receptors - metabolism</subject><subject>Gefitinib</subject><subject>Gefitinib - pharmacology</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Hep G2 Cells</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - enzymology</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - pathology</subject><subject>MAP kinase</subject><subject>MEK inhibitors</subject><subject>Molecular Targeted Therapy</subject><subject>Phosphatidylinositol 3-Kinase - metabolism</subject><subject>Protein expression</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein-tyrosine kinase</subject><subject>Pyridones - pharmacology</subject><subject>Pyrimidinones - pharmacology</subject><subject>Raf protein</subject><subject>RhoA protein</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Simvastatin</subject><subject>Simvastatin - pharmacology</subject><subject>Sorafenib - pharmacology</subject><subject>Transcription Factors - antagonists &amp; inhibitors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Yes-associated protein</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9rHSEUxaW0NCHNB-imCF3b6Og42kUh5F9DAn2UZpGV3PGZGcOMM1Vfm7ftJ4-vL02TRQTxwv2dcy8ehN4z-olRrg6SYIJpQpkilNOK3L1CuxUVjAil9Osn9Q7aT-mWlsMLV8u3aKfSQmgp6l305-Ts9DtZnPMLsji-YHiG3P-GNY6uWw2QXcLXhwucfBdg8KHDPuDeFWiybhgKEbGFaH2YRviMc-_w6GwPwacRQ1hinxP24zx4C9lPIW30GWLnsltu8Ajz-h16cwNDcvsP7x66Oj35cfSVXH47Oz86vCRWSJkJcCFq22hd27alGpRyVklh5RJU27RNRStolJWU6QY0d20rKG8rqBUX5Uq-h75sfedVO7qldSFHGMwc_QhxbSbw5nkn-N500y9T1Jw3uhh8fDCI08-VS9ncTqtYPiaZitJKNFz-pdiWsnFKKbqbxwmMmk1yZpucKcmZTXLmrmg-PF3tUfEvpwJUWyCVVuhc_D_6Zdd7xXelhA</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Xia, Hongwei</creator><creator>Dai, Xinyu</creator><creator>Yu, Huangfei</creator><creator>Zhou, Sheng</creator><creator>Fan, Zhenghai</creator><creator>Wei, Guoqing</creator><creator>Tang, Qiulin</creator><creator>Gong, Qiyong</creator><creator>Bi, Feng</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20180215</creationdate><title>EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy</title><author>Xia, Hongwei ; Dai, Xinyu ; Yu, Huangfei ; Zhou, Sheng ; Fan, Zhenghai ; Wei, Guoqing ; Tang, Qiulin ; Gong, Qiyong ; Bi, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-a3445c7995cbb09a88ec864c6da8b7b7202a78c60197a93ebb403b2a583458363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>13/1</topic><topic>13/2</topic><topic>13/31</topic><topic>13/89</topic><topic>13/95</topic><topic>3-Phosphoinositide-Dependent Protein Kinases - metabolism</topic><topic>96/95</topic><topic>Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>AKT protein</topic><topic>Antibodies</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carcinogenesis</topic><topic>Carcinoma, Hepatocellular - drug therapy</topic><topic>Carcinoma, Hepatocellular - enzymology</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>CYR61 protein</topic><topic>Enzyme inhibitors</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB Receptors - antagonists &amp; inhibitors</topic><topic>ErbB Receptors - metabolism</topic><topic>Gefitinib</topic><topic>Gefitinib - pharmacology</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Hep G2 Cells</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - enzymology</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - pathology</topic><topic>MAP kinase</topic><topic>MEK inhibitors</topic><topic>Molecular Targeted Therapy</topic><topic>Phosphatidylinositol 3-Kinase - metabolism</topic><topic>Protein expression</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein-tyrosine kinase</topic><topic>Pyridones - pharmacology</topic><topic>Pyrimidinones - pharmacology</topic><topic>Raf protein</topic><topic>RhoA protein</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Simvastatin</topic><topic>Simvastatin - pharmacology</topic><topic>Sorafenib - pharmacology</topic><topic>Transcription Factors - antagonists &amp; inhibitors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Yes-associated protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Hongwei</creatorcontrib><creatorcontrib>Dai, Xinyu</creatorcontrib><creatorcontrib>Yu, Huangfei</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Fan, Zhenghai</creatorcontrib><creatorcontrib>Wei, Guoqing</creatorcontrib><creatorcontrib>Tang, Qiulin</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Bi, Feng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Hongwei</au><au>Dai, Xinyu</au><au>Yu, Huangfei</au><au>Zhou, Sheng</au><au>Fan, Zhenghai</au><au>Wei, Guoqing</au><au>Tang, Qiulin</au><au>Gong, Qiyong</au><au>Bi, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2018-02-15</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><spage>269</spage><epage>12</epage><pages>269-12</pages><artnum>269</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>The epidermal growth factor receptor (EGFR) pathway and Hippo signaling play an important role in the carcinogenesis of hepatocellular carcinoma (HCC). However, the crosstalk between these two pathways and its implications in targeted therapy remains unclear. We found that the activated EGFR signaling could bypass RhoA to promote the expression of YAP(Yes-associated protein), the core effector of the Hippo signaling, and its downstream target Cyr61. Further studies indicated that EGFR signaling mainly acted through the PI3K-PDK1 (Phosphoinositide 3-kinase-Phosphoinositide-dependent kinase-1) pathway to activate YAP, but not the AKT and MAPK pathways. While YAP knockdown hardly affected the EGFR signaling. In addition, EGF could promote the proliferation of HCC cells in a YAP-independent manner. Combined targeting of YAP and EGFR signaling by simvastatin and the EGFR signaling inhibitors, including the EGFR tyrosine kinase inhibitor (TKI) gefitinib, the RAF inhibitor sorafenib and the MEK inhibitor trametinib, presented strong synergistic cytotoxicities in HCC cells. Therefore, the EGFR-PI3K-PDK1 pathway could activate the YAP signaling, and the activated EGFR signaling could promote the HCC cell growth in a YAP-independent manner. Combined use of FDA-approved inhibitors to simultaneously target YAP and EGFR signaling presented several promising therapeutic approaches for HCC treatment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29449645</pmid><doi>10.1038/s41419-018-0302-x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2018-02, Vol.9 (3), p.269-12, Article 269
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5833379
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects 1-Phosphatidylinositol 3-kinase
13/1
13/2
13/31
13/89
13/95
3-Phosphoinositide-Dependent Protein Kinases - metabolism
96/95
Adaptor Proteins, Signal Transducing - antagonists & inhibitors
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
AKT protein
Antibodies
Antineoplastic Combined Chemotherapy Protocols - pharmacology
Biochemistry
Biomedical and Life Sciences
Carcinogenesis
Carcinoma, Hepatocellular - drug therapy
Carcinoma, Hepatocellular - enzymology
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - pathology
Cell Biology
Cell Culture
Cell proliferation
Cell Proliferation - drug effects
CYR61 protein
Enzyme inhibitors
Epidermal growth factor
Epidermal growth factor receptors
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - metabolism
Gefitinib
Gefitinib - pharmacology
Gene Expression Regulation, Neoplastic
Hep G2 Cells
Hepatocellular carcinoma
Humans
Immunology
Life Sciences
Liver cancer
Liver Neoplasms - drug therapy
Liver Neoplasms - enzymology
Liver Neoplasms - genetics
Liver Neoplasms - pathology
MAP kinase
MEK inhibitors
Molecular Targeted Therapy
Phosphatidylinositol 3-Kinase - metabolism
Protein expression
Protein Kinase Inhibitors - pharmacology
Protein-tyrosine kinase
Pyridones - pharmacology
Pyrimidinones - pharmacology
Raf protein
RhoA protein
Signal transduction
Signal Transduction - drug effects
Simvastatin
Simvastatin - pharmacology
Sorafenib - pharmacology
Transcription Factors - antagonists & inhibitors
Transcription Factors - genetics
Transcription Factors - metabolism
Yes-associated protein
title EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EGFR-PI3K-PDK1%20pathway%20regulates%20YAP%20signaling%20in%20hepatocellular%20carcinoma:%20the%20mechanism%20and%20its%20implications%20in%20targeted%20therapy&rft.jtitle=Cell%20death%20&%20disease&rft.au=Xia,%20Hongwei&rft.date=2018-02-15&rft.volume=9&rft.issue=3&rft.spage=269&rft.epage=12&rft.pages=269-12&rft.artnum=269&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-018-0302-x&rft_dat=%3Cproquest_pubme%3E2002473679%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002473679&rft_id=info:pmid/29449645&rfr_iscdi=true