Modelling resonant arrays of the Helmholtz type in the time domain
We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic s...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2018-02, Vol.474 (2210), p.20170894-20170894 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20170894 |
---|---|
container_issue | 2210 |
container_start_page | 20170894 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 474 |
creator | Maurel, Agnès Marigo, Jean-Jacques Mercier, Jean-François Pham, Kim |
description | We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic slab replacing the cavity region, associated with transmission, or jump, conditions for the acoustic pressure and for the normal velocity across the region of the necks. The coefficients entering in the effective wave equation are simply related to the fraction of air in the periodic cell of the array. Those entering in the jump conditions are related to near field effects in the vicinity of the necks and they encapsulate the effects of their geometry. The effective problem, which accounts for the coupling of the resonators with the surrounding air, is written in the time domain which allows us to question the equation of energy conservation. This is of practical importance if the numerical implementations of the effective problem in the time domain is sought. |
doi_str_mv | 10.1098/rspa.2017.0894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5832846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011272468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-2bfd52634b1dfb75550145f70756ffde0623763545c5dc1bf23da76555c08c043</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxSMEoqVw5YgicYFDlvHEH8kFaakoi7QIxMfZchKn65LEwU5WSv_6OptS6EpwsuX5vffGM1H0nMCKQJ69cb5XKwQiVpDl9EF0SqggCeaUPwz3lNOEAZKT6In3VwCQs0w8jk4wZyAYstPo3Sdb6aYx3WXstLed6oZYOacmH9s6HnY63uim3dlmuI6Hqdex6Q6vg2l1XNlWme5p9KhWjdfPbs-z6MfF--_nm2T7-cPH8_U2KVnOhwSLumLIU1qQqi4EYwwIZbUIjfC6rjRwTAVPGWUlq0pS1JhWSvDAlZCVQNOz6O3i249Fq6tSd4NTjeydaZWbpFVG3q90Zicv7V6yLMWM8mDwejHYHck2662c34BkiDSHPQnsq9swZ3-N2g-yNb4Mk1KdtqOXYeQEBVKeBfTlEXplR9eFURwoCgQZC9RqoUpnvXe6vuuAgJxXKedVzgoh51UGwYu_v3uH_95dANIFcHYKYbY0epj-ZP_T9uf_VF-_fVnvqaAGMRhAlhKgCIjy2vSLVShK4_2o5QG5b3-cdgPviMzo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011401255</pqid></control><display><type>article</type><title>Modelling resonant arrays of the Helmholtz type in the time domain</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Maurel, Agnès ; Marigo, Jean-Jacques ; Mercier, Jean-François ; Pham, Kim</creator><creatorcontrib>Maurel, Agnès ; Marigo, Jean-Jacques ; Mercier, Jean-François ; Pham, Kim</creatorcontrib><description>We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic slab replacing the cavity region, associated with transmission, or jump, conditions for the acoustic pressure and for the normal velocity across the region of the necks. The coefficients entering in the effective wave equation are simply related to the fraction of air in the periodic cell of the array. Those entering in the jump conditions are related to near field effects in the vicinity of the necks and they encapsulate the effects of their geometry. The effective problem, which accounts for the coupling of the resonators with the surrounding air, is written in the time domain which allows us to question the equation of energy conservation. This is of practical importance if the numerical implementations of the effective problem in the time domain is sought.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2017.0894</identifier><identifier>PMID: 29507525</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Acoustics ; Arrays ; Asymptotic Analysis ; Energy conservation ; Engineering Sciences ; Helmholtz Resonator ; High-Order Homogenization ; Mathematical models ; Mechanics ; Metamaterial ; Neck ; Physics ; Resonators ; Solid mechanics ; Time domain analysis ; Wave equations</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-02, Vol.474 (2210), p.20170894-20170894</ispartof><rights>2018 The Author(s)</rights><rights>Copyright The Royal Society Publishing Feb 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-2bfd52634b1dfb75550145f70756ffde0623763545c5dc1bf23da76555c08c043</citedby><cites>FETCH-LOGICAL-c596t-2bfd52634b1dfb75550145f70756ffde0623763545c5dc1bf23da76555c08c043</cites><orcidid>0000-0001-8432-9871 ; 0000-0001-7949-5031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29507525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01822490$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maurel, Agnès</creatorcontrib><creatorcontrib>Marigo, Jean-Jacques</creatorcontrib><creatorcontrib>Mercier, Jean-François</creatorcontrib><creatorcontrib>Pham, Kim</creatorcontrib><title>Modelling resonant arrays of the Helmholtz type in the time domain</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic slab replacing the cavity region, associated with transmission, or jump, conditions for the acoustic pressure and for the normal velocity across the region of the necks. The coefficients entering in the effective wave equation are simply related to the fraction of air in the periodic cell of the array. Those entering in the jump conditions are related to near field effects in the vicinity of the necks and they encapsulate the effects of their geometry. The effective problem, which accounts for the coupling of the resonators with the surrounding air, is written in the time domain which allows us to question the equation of energy conservation. This is of practical importance if the numerical implementations of the effective problem in the time domain is sought.</description><subject>Acoustics</subject><subject>Arrays</subject><subject>Asymptotic Analysis</subject><subject>Energy conservation</subject><subject>Engineering Sciences</subject><subject>Helmholtz Resonator</subject><subject>High-Order Homogenization</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Metamaterial</subject><subject>Neck</subject><subject>Physics</subject><subject>Resonators</subject><subject>Solid mechanics</subject><subject>Time domain analysis</subject><subject>Wave equations</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxSMEoqVw5YgicYFDlvHEH8kFaakoi7QIxMfZchKn65LEwU5WSv_6OptS6EpwsuX5vffGM1H0nMCKQJ69cb5XKwQiVpDl9EF0SqggCeaUPwz3lNOEAZKT6In3VwCQs0w8jk4wZyAYstPo3Sdb6aYx3WXstLed6oZYOacmH9s6HnY63uim3dlmuI6Hqdex6Q6vg2l1XNlWme5p9KhWjdfPbs-z6MfF--_nm2T7-cPH8_U2KVnOhwSLumLIU1qQqi4EYwwIZbUIjfC6rjRwTAVPGWUlq0pS1JhWSvDAlZCVQNOz6O3i249Fq6tSd4NTjeydaZWbpFVG3q90Zicv7V6yLMWM8mDwejHYHck2662c34BkiDSHPQnsq9swZ3-N2g-yNb4Mk1KdtqOXYeQEBVKeBfTlEXplR9eFURwoCgQZC9RqoUpnvXe6vuuAgJxXKedVzgoh51UGwYu_v3uH_95dANIFcHYKYbY0epj-ZP_T9uf_VF-_fVnvqaAGMRhAlhKgCIjy2vSLVShK4_2o5QG5b3-cdgPviMzo</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Maurel, Agnès</creator><creator>Marigo, Jean-Jacques</creator><creator>Mercier, Jean-François</creator><creator>Pham, Kim</creator><general>The Royal Society Publishing</general><general>Royal Society, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8432-9871</orcidid><orcidid>https://orcid.org/0000-0001-7949-5031</orcidid></search><sort><creationdate>20180201</creationdate><title>Modelling resonant arrays of the Helmholtz type in the time domain</title><author>Maurel, Agnès ; Marigo, Jean-Jacques ; Mercier, Jean-François ; Pham, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-2bfd52634b1dfb75550145f70756ffde0623763545c5dc1bf23da76555c08c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Arrays</topic><topic>Asymptotic Analysis</topic><topic>Energy conservation</topic><topic>Engineering Sciences</topic><topic>Helmholtz Resonator</topic><topic>High-Order Homogenization</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Metamaterial</topic><topic>Neck</topic><topic>Physics</topic><topic>Resonators</topic><topic>Solid mechanics</topic><topic>Time domain analysis</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maurel, Agnès</creatorcontrib><creatorcontrib>Marigo, Jean-Jacques</creatorcontrib><creatorcontrib>Mercier, Jean-François</creatorcontrib><creatorcontrib>Pham, Kim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maurel, Agnès</au><au>Marigo, Jean-Jacques</au><au>Mercier, Jean-François</au><au>Pham, Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling resonant arrays of the Helmholtz type in the time domain</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>474</volume><issue>2210</issue><spage>20170894</spage><epage>20170894</epage><pages>20170894-20170894</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic slab replacing the cavity region, associated with transmission, or jump, conditions for the acoustic pressure and for the normal velocity across the region of the necks. The coefficients entering in the effective wave equation are simply related to the fraction of air in the periodic cell of the array. Those entering in the jump conditions are related to near field effects in the vicinity of the necks and they encapsulate the effects of their geometry. The effective problem, which accounts for the coupling of the resonators with the surrounding air, is written in the time domain which allows us to question the equation of energy conservation. This is of practical importance if the numerical implementations of the effective problem in the time domain is sought.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>29507525</pmid><doi>10.1098/rspa.2017.0894</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0001-8432-9871</orcidid><orcidid>https://orcid.org/0000-0001-7949-5031</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-02, Vol.474 (2210), p.20170894-20170894 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5832846 |
source | Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Acoustics Arrays Asymptotic Analysis Energy conservation Engineering Sciences Helmholtz Resonator High-Order Homogenization Mathematical models Mechanics Metamaterial Neck Physics Resonators Solid mechanics Time domain analysis Wave equations |
title | Modelling resonant arrays of the Helmholtz type in the time domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20resonant%20arrays%20of%20the%20Helmholtz%20type%20in%20the%20time%20domain&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Maurel,%20Agn%C3%A8s&rft.date=2018-02-01&rft.volume=474&rft.issue=2210&rft.spage=20170894&rft.epage=20170894&rft.pages=20170894-20170894&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2017.0894&rft_dat=%3Cproquest_pubme%3E2011272468%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011401255&rft_id=info:pmid/29507525&rfr_iscdi=true |