Modelling resonant arrays of the Helmholtz type in the time domain

We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2018-02, Vol.474 (2210), p.20170894-20170894
Hauptverfasser: Maurel, Agnès, Marigo, Jean-Jacques, Mercier, Jean-François, Pham, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20170894
container_issue 2210
container_start_page 20170894
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 474
creator Maurel, Agnès
Marigo, Jean-Jacques
Mercier, Jean-François
Pham, Kim
description We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic slab replacing the cavity region, associated with transmission, or jump, conditions for the acoustic pressure and for the normal velocity across the region of the necks. The coefficients entering in the effective wave equation are simply related to the fraction of air in the periodic cell of the array. Those entering in the jump conditions are related to near field effects in the vicinity of the necks and they encapsulate the effects of their geometry. The effective problem, which accounts for the coupling of the resonators with the surrounding air, is written in the time domain which allows us to question the equation of energy conservation. This is of practical importance if the numerical implementations of the effective problem in the time domain is sought.
doi_str_mv 10.1098/rspa.2017.0894
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5832846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011272468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-2bfd52634b1dfb75550145f70756ffde0623763545c5dc1bf23da76555c08c043</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxSMEoqVw5YgicYFDlvHEH8kFaakoi7QIxMfZchKn65LEwU5WSv_6OptS6EpwsuX5vffGM1H0nMCKQJ69cb5XKwQiVpDl9EF0SqggCeaUPwz3lNOEAZKT6In3VwCQs0w8jk4wZyAYstPo3Sdb6aYx3WXstLed6oZYOacmH9s6HnY63uim3dlmuI6Hqdex6Q6vg2l1XNlWme5p9KhWjdfPbs-z6MfF--_nm2T7-cPH8_U2KVnOhwSLumLIU1qQqi4EYwwIZbUIjfC6rjRwTAVPGWUlq0pS1JhWSvDAlZCVQNOz6O3i249Fq6tSd4NTjeydaZWbpFVG3q90Zicv7V6yLMWM8mDwejHYHck2662c34BkiDSHPQnsq9swZ3-N2g-yNb4Mk1KdtqOXYeQEBVKeBfTlEXplR9eFURwoCgQZC9RqoUpnvXe6vuuAgJxXKedVzgoh51UGwYu_v3uH_95dANIFcHYKYbY0epj-ZP_T9uf_VF-_fVnvqaAGMRhAlhKgCIjy2vSLVShK4_2o5QG5b3-cdgPviMzo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011401255</pqid></control><display><type>article</type><title>Modelling resonant arrays of the Helmholtz type in the time domain</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Maurel, Agnès ; Marigo, Jean-Jacques ; Mercier, Jean-François ; Pham, Kim</creator><creatorcontrib>Maurel, Agnès ; Marigo, Jean-Jacques ; Mercier, Jean-François ; Pham, Kim</creatorcontrib><description>We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic slab replacing the cavity region, associated with transmission, or jump, conditions for the acoustic pressure and for the normal velocity across the region of the necks. The coefficients entering in the effective wave equation are simply related to the fraction of air in the periodic cell of the array. Those entering in the jump conditions are related to near field effects in the vicinity of the necks and they encapsulate the effects of their geometry. The effective problem, which accounts for the coupling of the resonators with the surrounding air, is written in the time domain which allows us to question the equation of energy conservation. This is of practical importance if the numerical implementations of the effective problem in the time domain is sought.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2017.0894</identifier><identifier>PMID: 29507525</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Acoustics ; Arrays ; Asymptotic Analysis ; Energy conservation ; Engineering Sciences ; Helmholtz Resonator ; High-Order Homogenization ; Mathematical models ; Mechanics ; Metamaterial ; Neck ; Physics ; Resonators ; Solid mechanics ; Time domain analysis ; Wave equations</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-02, Vol.474 (2210), p.20170894-20170894</ispartof><rights>2018 The Author(s)</rights><rights>Copyright The Royal Society Publishing Feb 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-2bfd52634b1dfb75550145f70756ffde0623763545c5dc1bf23da76555c08c043</citedby><cites>FETCH-LOGICAL-c596t-2bfd52634b1dfb75550145f70756ffde0623763545c5dc1bf23da76555c08c043</cites><orcidid>0000-0001-8432-9871 ; 0000-0001-7949-5031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29507525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01822490$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maurel, Agnès</creatorcontrib><creatorcontrib>Marigo, Jean-Jacques</creatorcontrib><creatorcontrib>Mercier, Jean-François</creatorcontrib><creatorcontrib>Pham, Kim</creatorcontrib><title>Modelling resonant arrays of the Helmholtz type in the time domain</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc Math Phys Eng Sci</addtitle><description>We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic slab replacing the cavity region, associated with transmission, or jump, conditions for the acoustic pressure and for the normal velocity across the region of the necks. The coefficients entering in the effective wave equation are simply related to the fraction of air in the periodic cell of the array. Those entering in the jump conditions are related to near field effects in the vicinity of the necks and they encapsulate the effects of their geometry. The effective problem, which accounts for the coupling of the resonators with the surrounding air, is written in the time domain which allows us to question the equation of energy conservation. This is of practical importance if the numerical implementations of the effective problem in the time domain is sought.</description><subject>Acoustics</subject><subject>Arrays</subject><subject>Asymptotic Analysis</subject><subject>Energy conservation</subject><subject>Engineering Sciences</subject><subject>Helmholtz Resonator</subject><subject>High-Order Homogenization</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Metamaterial</subject><subject>Neck</subject><subject>Physics</subject><subject>Resonators</subject><subject>Solid mechanics</subject><subject>Time domain analysis</subject><subject>Wave equations</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxSMEoqVw5YgicYFDlvHEH8kFaakoi7QIxMfZchKn65LEwU5WSv_6OptS6EpwsuX5vffGM1H0nMCKQJ69cb5XKwQiVpDl9EF0SqggCeaUPwz3lNOEAZKT6In3VwCQs0w8jk4wZyAYstPo3Sdb6aYx3WXstLed6oZYOacmH9s6HnY63uim3dlmuI6Hqdex6Q6vg2l1XNlWme5p9KhWjdfPbs-z6MfF--_nm2T7-cPH8_U2KVnOhwSLumLIU1qQqi4EYwwIZbUIjfC6rjRwTAVPGWUlq0pS1JhWSvDAlZCVQNOz6O3i249Fq6tSd4NTjeydaZWbpFVG3q90Zicv7V6yLMWM8mDwejHYHck2662c34BkiDSHPQnsq9swZ3-N2g-yNb4Mk1KdtqOXYeQEBVKeBfTlEXplR9eFURwoCgQZC9RqoUpnvXe6vuuAgJxXKedVzgoh51UGwYu_v3uH_95dANIFcHYKYbY0epj-ZP_T9uf_VF-_fVnvqaAGMRhAlhKgCIjy2vSLVShK4_2o5QG5b3-cdgPviMzo</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Maurel, Agnès</creator><creator>Marigo, Jean-Jacques</creator><creator>Mercier, Jean-François</creator><creator>Pham, Kim</creator><general>The Royal Society Publishing</general><general>Royal Society, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8432-9871</orcidid><orcidid>https://orcid.org/0000-0001-7949-5031</orcidid></search><sort><creationdate>20180201</creationdate><title>Modelling resonant arrays of the Helmholtz type in the time domain</title><author>Maurel, Agnès ; Marigo, Jean-Jacques ; Mercier, Jean-François ; Pham, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-2bfd52634b1dfb75550145f70756ffde0623763545c5dc1bf23da76555c08c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Arrays</topic><topic>Asymptotic Analysis</topic><topic>Energy conservation</topic><topic>Engineering Sciences</topic><topic>Helmholtz Resonator</topic><topic>High-Order Homogenization</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Metamaterial</topic><topic>Neck</topic><topic>Physics</topic><topic>Resonators</topic><topic>Solid mechanics</topic><topic>Time domain analysis</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maurel, Agnès</creatorcontrib><creatorcontrib>Marigo, Jean-Jacques</creatorcontrib><creatorcontrib>Mercier, Jean-François</creatorcontrib><creatorcontrib>Pham, Kim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maurel, Agnès</au><au>Marigo, Jean-Jacques</au><au>Mercier, Jean-François</au><au>Pham, Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling resonant arrays of the Helmholtz type in the time domain</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>474</volume><issue>2210</issue><spage>20170894</spage><epage>20170894</epage><pages>20170894-20170894</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>We present a model based on a two-scale asymptotic analysis for resonant arrays of the Helmholtz type, with resonators open at a single extremity (standard resonators) or open at both extremities (double-sided resonators). The effective behaviour of such arrays is that of a homogeneous anisotropic slab replacing the cavity region, associated with transmission, or jump, conditions for the acoustic pressure and for the normal velocity across the region of the necks. The coefficients entering in the effective wave equation are simply related to the fraction of air in the periodic cell of the array. Those entering in the jump conditions are related to near field effects in the vicinity of the necks and they encapsulate the effects of their geometry. The effective problem, which accounts for the coupling of the resonators with the surrounding air, is written in the time domain which allows us to question the equation of energy conservation. This is of practical importance if the numerical implementations of the effective problem in the time domain is sought.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>29507525</pmid><doi>10.1098/rspa.2017.0894</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0001-8432-9871</orcidid><orcidid>https://orcid.org/0000-0001-7949-5031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2018-02, Vol.474 (2210), p.20170894-20170894
issn 1364-5021
1471-2946
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5832846
source Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Acoustics
Arrays
Asymptotic Analysis
Energy conservation
Engineering Sciences
Helmholtz Resonator
High-Order Homogenization
Mathematical models
Mechanics
Metamaterial
Neck
Physics
Resonators
Solid mechanics
Time domain analysis
Wave equations
title Modelling resonant arrays of the Helmholtz type in the time domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20resonant%20arrays%20of%20the%20Helmholtz%20type%20in%20the%20time%20domain&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Maurel,%20Agn%C3%A8s&rft.date=2018-02-01&rft.volume=474&rft.issue=2210&rft.spage=20170894&rft.epage=20170894&rft.pages=20170894-20170894&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2017.0894&rft_dat=%3Cproquest_pubme%3E2011272468%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011401255&rft_id=info:pmid/29507525&rfr_iscdi=true