Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism

Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2018-02, Vol.118 (4), p.1460-1494
Hauptverfasser: Walsh, Christopher T, Tu, Benjamin P, Tang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1494
container_issue 4
container_start_page 1460
container_title Chemical reviews
container_volume 118
creator Walsh, Christopher T
Tu, Benjamin P
Tang, Yi
description Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NADH, and acetyl-CoA (Figure ) at the molecular level play such central roles. Yet, without those insights into why cells accumulate them and how the enabling properties of these key metabolites power much of cell metabolism, the underlying molecular logic remains mysterious. Four other metabolites, S-adenosylmethionine, carbamoyl phosphate, UDP-glucose, and Δ2-isopentenyl-PP play similar roles in using group transfer chemistry to drive otherwise unfavorable biosynthetic equilibria. This review provides the underlying chemical logic to remind how these seven key molecules function as mobile packets of cellular currencies for phosphoryl transfers (ATP), acyl transfers (acetyl-CoA, carbamoyl-P), methyl transfers (SAM), prenyl transfers (IPP), glucosyl transfers (UDP-glucose), and electron and ADP-ribosyl transfers (NAD­(P)­H/NAD­(P)+) to drive metabolic transformations in and across most primary pathways. The eighth key metabolite is molecular oxygen (O2), thermodynamically activated for reduction by one electron path, leaving it kinetically stable to the vast majority of organic cellular metabolites.
doi_str_mv 10.1021/acs.chemrev.7b00510
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5831524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979970301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a506t-6c8367e08bf803e41ed94cd3e22045cc461e34708120380e7b32294d653cc43d3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModq1-AkEGfOnLbG-SSWbyIpSl_sEWBeujhEzmbmdKZlKTzMp-e1N2XNQHfQrh_s5J7jmEvKSwpsDoubFxbXscA-7WdQsgKDwiKyoYlLJR8JisAECVTEpxQp7FeJevQrD6KTlhitWMUrki3y6H2z4VH4cJ02CNc_viSzKtw6KdU3HTYxh9t5_MuAwvbBp2JmFXXHuHdnYYi9SbVHz2PzAUG3SuuMbs4N0Qx-fkyda4iC-W85R8fXt5s3lfXn1692FzcVUaATKV0jZc1ghNu22AY0WxU5XtODIGlbC2khR5VUNDGfAGsG45Y6rqpOB5yDt-St4cfO_ndsTO4pSCcfo-DKMJe-3NoP-cTEOvb_1Oi4bnwKpscLYYBP99xpj0OESblzET-jlqRjltVI5N_BelqlaqBg40o6__Qu_8HKachGbAOFeSSpUpfqBs8DEG3B7_TUE_NK1z03ppWi9NZ9Wr31c-an5Vm4HzA_CgPr77L8ufWsO3RQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023396169</pqid></control><display><type>article</type><title>Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism</title><source>MEDLINE</source><source>ACS Publications</source><creator>Walsh, Christopher T ; Tu, Benjamin P ; Tang, Yi</creator><creatorcontrib>Walsh, Christopher T ; Tu, Benjamin P ; Tang, Yi</creatorcontrib><description>Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NADH, and acetyl-CoA (Figure ) at the molecular level play such central roles. Yet, without those insights into why cells accumulate them and how the enabling properties of these key metabolites power much of cell metabolism, the underlying molecular logic remains mysterious. Four other metabolites, S-adenosylmethionine, carbamoyl phosphate, UDP-glucose, and Δ2-isopentenyl-PP play similar roles in using group transfer chemistry to drive otherwise unfavorable biosynthetic equilibria. This review provides the underlying chemical logic to remind how these seven key molecules function as mobile packets of cellular currencies for phosphoryl transfers (ATP), acyl transfers (acetyl-CoA, carbamoyl-P), methyl transfers (SAM), prenyl transfers (IPP), glucosyl transfers (UDP-glucose), and electron and ADP-ribosyl transfers (NAD­(P)­H/NAD­(P)+) to drive metabolic transformations in and across most primary pathways. The eighth key metabolite is molecular oxygen (O2), thermodynamically activated for reduction by one electron path, leaving it kinetically stable to the vast majority of organic cellular metabolites.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.7b00510</identifier><identifier>PMID: 29272116</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acetyl coenzyme A ; Acetyl Coenzyme A - metabolism ; Adenosine - metabolism ; Adenosine diphosphate ; Adenosine Triphosphate - metabolism ; biosynthesis ; Cells ; chemistry ; Currencies ; Glucose ; Glucose - metabolism ; Isomerism ; Kinetics ; Metabolic Networks and Pathways ; Metabolism ; Metabolites ; Molecules ; NAD (coenzyme) ; NAD - metabolism ; NADP (coenzyme) ; NADP - metabolism ; Nicotinamide adenine dinucleotide ; Oxygen ; Packets (communication) ; phosphates ; Phosphorus Compounds - metabolism ; Polypropylene ; Protein Processing, Post-Translational ; S-adenosylmethionine ; S-Adenosylmethionine - metabolism ; Thermodynamics</subject><ispartof>Chemical reviews, 2018-02, Vol.118 (4), p.1460-1494</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 28, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a506t-6c8367e08bf803e41ed94cd3e22045cc461e34708120380e7b32294d653cc43d3</citedby><cites>FETCH-LOGICAL-a506t-6c8367e08bf803e41ed94cd3e22045cc461e34708120380e7b32294d653cc43d3</cites><orcidid>0000-0003-1597-0141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.7b00510$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.7b00510$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29272116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walsh, Christopher T</creatorcontrib><creatorcontrib>Tu, Benjamin P</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><title>Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NADH, and acetyl-CoA (Figure ) at the molecular level play such central roles. Yet, without those insights into why cells accumulate them and how the enabling properties of these key metabolites power much of cell metabolism, the underlying molecular logic remains mysterious. Four other metabolites, S-adenosylmethionine, carbamoyl phosphate, UDP-glucose, and Δ2-isopentenyl-PP play similar roles in using group transfer chemistry to drive otherwise unfavorable biosynthetic equilibria. This review provides the underlying chemical logic to remind how these seven key molecules function as mobile packets of cellular currencies for phosphoryl transfers (ATP), acyl transfers (acetyl-CoA, carbamoyl-P), methyl transfers (SAM), prenyl transfers (IPP), glucosyl transfers (UDP-glucose), and electron and ADP-ribosyl transfers (NAD­(P)­H/NAD­(P)+) to drive metabolic transformations in and across most primary pathways. The eighth key metabolite is molecular oxygen (O2), thermodynamically activated for reduction by one electron path, leaving it kinetically stable to the vast majority of organic cellular metabolites.</description><subject>acetyl coenzyme A</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Adenosine - metabolism</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>biosynthesis</subject><subject>Cells</subject><subject>chemistry</subject><subject>Currencies</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Isomerism</subject><subject>Kinetics</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Molecules</subject><subject>NAD (coenzyme)</subject><subject>NAD - metabolism</subject><subject>NADP (coenzyme)</subject><subject>NADP - metabolism</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxygen</subject><subject>Packets (communication)</subject><subject>phosphates</subject><subject>Phosphorus Compounds - metabolism</subject><subject>Polypropylene</subject><subject>Protein Processing, Post-Translational</subject><subject>S-adenosylmethionine</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>Thermodynamics</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV9rFDEUxYModq1-AkEGfOnLbG-SSWbyIpSl_sEWBeujhEzmbmdKZlKTzMp-e1N2XNQHfQrh_s5J7jmEvKSwpsDoubFxbXscA-7WdQsgKDwiKyoYlLJR8JisAECVTEpxQp7FeJevQrD6KTlhitWMUrki3y6H2z4VH4cJ02CNc_viSzKtw6KdU3HTYxh9t5_MuAwvbBp2JmFXXHuHdnYYi9SbVHz2PzAUG3SuuMbs4N0Qx-fkyda4iC-W85R8fXt5s3lfXn1692FzcVUaATKV0jZc1ghNu22AY0WxU5XtODIGlbC2khR5VUNDGfAGsG45Y6rqpOB5yDt-St4cfO_ndsTO4pSCcfo-DKMJe-3NoP-cTEOvb_1Oi4bnwKpscLYYBP99xpj0OESblzET-jlqRjltVI5N_BelqlaqBg40o6__Qu_8HKachGbAOFeSSpUpfqBs8DEG3B7_TUE_NK1z03ppWi9NZ9Wr31c-an5Vm4HzA_CgPr77L8ufWsO3RQ</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Walsh, Christopher T</creator><creator>Tu, Benjamin P</creator><creator>Tang, Yi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1597-0141</orcidid></search><sort><creationdate>20180228</creationdate><title>Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism</title><author>Walsh, Christopher T ; Tu, Benjamin P ; Tang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a506t-6c8367e08bf803e41ed94cd3e22045cc461e34708120380e7b32294d653cc43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acetyl coenzyme A</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Adenosine - metabolism</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>biosynthesis</topic><topic>Cells</topic><topic>chemistry</topic><topic>Currencies</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Isomerism</topic><topic>Kinetics</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Molecules</topic><topic>NAD (coenzyme)</topic><topic>NAD - metabolism</topic><topic>NADP (coenzyme)</topic><topic>NADP - metabolism</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxygen</topic><topic>Packets (communication)</topic><topic>phosphates</topic><topic>Phosphorus Compounds - metabolism</topic><topic>Polypropylene</topic><topic>Protein Processing, Post-Translational</topic><topic>S-adenosylmethionine</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsh, Christopher T</creatorcontrib><creatorcontrib>Tu, Benjamin P</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsh, Christopher T</au><au>Tu, Benjamin P</au><au>Tang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2018-02-28</date><risdate>2018</risdate><volume>118</volume><issue>4</issue><spage>1460</spage><epage>1494</epage><pages>1460-1494</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NADH, and acetyl-CoA (Figure ) at the molecular level play such central roles. Yet, without those insights into why cells accumulate them and how the enabling properties of these key metabolites power much of cell metabolism, the underlying molecular logic remains mysterious. Four other metabolites, S-adenosylmethionine, carbamoyl phosphate, UDP-glucose, and Δ2-isopentenyl-PP play similar roles in using group transfer chemistry to drive otherwise unfavorable biosynthetic equilibria. This review provides the underlying chemical logic to remind how these seven key molecules function as mobile packets of cellular currencies for phosphoryl transfers (ATP), acyl transfers (acetyl-CoA, carbamoyl-P), methyl transfers (SAM), prenyl transfers (IPP), glucosyl transfers (UDP-glucose), and electron and ADP-ribosyl transfers (NAD­(P)­H/NAD­(P)+) to drive metabolic transformations in and across most primary pathways. The eighth key metabolite is molecular oxygen (O2), thermodynamically activated for reduction by one electron path, leaving it kinetically stable to the vast majority of organic cellular metabolites.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29272116</pmid><doi>10.1021/acs.chemrev.7b00510</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-1597-0141</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2018-02, Vol.118 (4), p.1460-1494
issn 0009-2665
1520-6890
1520-6890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5831524
source MEDLINE; ACS Publications
subjects acetyl coenzyme A
Acetyl Coenzyme A - metabolism
Adenosine - metabolism
Adenosine diphosphate
Adenosine Triphosphate - metabolism
biosynthesis
Cells
chemistry
Currencies
Glucose
Glucose - metabolism
Isomerism
Kinetics
Metabolic Networks and Pathways
Metabolism
Metabolites
Molecules
NAD (coenzyme)
NAD - metabolism
NADP (coenzyme)
NADP - metabolism
Nicotinamide adenine dinucleotide
Oxygen
Packets (communication)
phosphates
Phosphorus Compounds - metabolism
Polypropylene
Protein Processing, Post-Translational
S-adenosylmethionine
S-Adenosylmethionine - metabolism
Thermodynamics
title Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eight%20Kinetically%20Stable%20but%20Thermodynamically%20Activated%20Molecules%20that%20Power%20Cell%20Metabolism&rft.jtitle=Chemical%20reviews&rft.au=Walsh,%20Christopher%20T&rft.date=2018-02-28&rft.volume=118&rft.issue=4&rft.spage=1460&rft.epage=1494&rft.pages=1460-1494&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.7b00510&rft_dat=%3Cproquest_pubme%3E1979970301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023396169&rft_id=info:pmid/29272116&rfr_iscdi=true