Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism
Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NA...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2018-02, Vol.118 (4), p.1460-1494 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1494 |
---|---|
container_issue | 4 |
container_start_page | 1460 |
container_title | Chemical reviews |
container_volume | 118 |
creator | Walsh, Christopher T Tu, Benjamin P Tang, Yi |
description | Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NADH, and acetyl-CoA (Figure ) at the molecular level play such central roles. Yet, without those insights into why cells accumulate them and how the enabling properties of these key metabolites power much of cell metabolism, the underlying molecular logic remains mysterious. Four other metabolites, S-adenosylmethionine, carbamoyl phosphate, UDP-glucose, and Δ2-isopentenyl-PP play similar roles in using group transfer chemistry to drive otherwise unfavorable biosynthetic equilibria. This review provides the underlying chemical logic to remind how these seven key molecules function as mobile packets of cellular currencies for phosphoryl transfers (ATP), acyl transfers (acetyl-CoA, carbamoyl-P), methyl transfers (SAM), prenyl transfers (IPP), glucosyl transfers (UDP-glucose), and electron and ADP-ribosyl transfers (NAD(P)H/NAD(P)+) to drive metabolic transformations in and across most primary pathways. The eighth key metabolite is molecular oxygen (O2), thermodynamically activated for reduction by one electron path, leaving it kinetically stable to the vast majority of organic cellular metabolites. |
doi_str_mv | 10.1021/acs.chemrev.7b00510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5831524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979970301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a506t-6c8367e08bf803e41ed94cd3e22045cc461e34708120380e7b32294d653cc43d3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModq1-AkEGfOnLbG-SSWbyIpSl_sEWBeujhEzmbmdKZlKTzMp-e1N2XNQHfQrh_s5J7jmEvKSwpsDoubFxbXscA-7WdQsgKDwiKyoYlLJR8JisAECVTEpxQp7FeJevQrD6KTlhitWMUrki3y6H2z4VH4cJ02CNc_viSzKtw6KdU3HTYxh9t5_MuAwvbBp2JmFXXHuHdnYYi9SbVHz2PzAUG3SuuMbs4N0Qx-fkyda4iC-W85R8fXt5s3lfXn1692FzcVUaATKV0jZc1ghNu22AY0WxU5XtODIGlbC2khR5VUNDGfAGsG45Y6rqpOB5yDt-St4cfO_ndsTO4pSCcfo-DKMJe-3NoP-cTEOvb_1Oi4bnwKpscLYYBP99xpj0OESblzET-jlqRjltVI5N_BelqlaqBg40o6__Qu_8HKachGbAOFeSSpUpfqBs8DEG3B7_TUE_NK1z03ppWi9NZ9Wr31c-an5Vm4HzA_CgPr77L8ufWsO3RQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023396169</pqid></control><display><type>article</type><title>Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism</title><source>MEDLINE</source><source>ACS Publications</source><creator>Walsh, Christopher T ; Tu, Benjamin P ; Tang, Yi</creator><creatorcontrib>Walsh, Christopher T ; Tu, Benjamin P ; Tang, Yi</creatorcontrib><description>Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NADH, and acetyl-CoA (Figure ) at the molecular level play such central roles. Yet, without those insights into why cells accumulate them and how the enabling properties of these key metabolites power much of cell metabolism, the underlying molecular logic remains mysterious. Four other metabolites, S-adenosylmethionine, carbamoyl phosphate, UDP-glucose, and Δ2-isopentenyl-PP play similar roles in using group transfer chemistry to drive otherwise unfavorable biosynthetic equilibria. This review provides the underlying chemical logic to remind how these seven key molecules function as mobile packets of cellular currencies for phosphoryl transfers (ATP), acyl transfers (acetyl-CoA, carbamoyl-P), methyl transfers (SAM), prenyl transfers (IPP), glucosyl transfers (UDP-glucose), and electron and ADP-ribosyl transfers (NAD(P)H/NAD(P)+) to drive metabolic transformations in and across most primary pathways. The eighth key metabolite is molecular oxygen (O2), thermodynamically activated for reduction by one electron path, leaving it kinetically stable to the vast majority of organic cellular metabolites.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.7b00510</identifier><identifier>PMID: 29272116</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acetyl coenzyme A ; Acetyl Coenzyme A - metabolism ; Adenosine - metabolism ; Adenosine diphosphate ; Adenosine Triphosphate - metabolism ; biosynthesis ; Cells ; chemistry ; Currencies ; Glucose ; Glucose - metabolism ; Isomerism ; Kinetics ; Metabolic Networks and Pathways ; Metabolism ; Metabolites ; Molecules ; NAD (coenzyme) ; NAD - metabolism ; NADP (coenzyme) ; NADP - metabolism ; Nicotinamide adenine dinucleotide ; Oxygen ; Packets (communication) ; phosphates ; Phosphorus Compounds - metabolism ; Polypropylene ; Protein Processing, Post-Translational ; S-adenosylmethionine ; S-Adenosylmethionine - metabolism ; Thermodynamics</subject><ispartof>Chemical reviews, 2018-02, Vol.118 (4), p.1460-1494</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 28, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a506t-6c8367e08bf803e41ed94cd3e22045cc461e34708120380e7b32294d653cc43d3</citedby><cites>FETCH-LOGICAL-a506t-6c8367e08bf803e41ed94cd3e22045cc461e34708120380e7b32294d653cc43d3</cites><orcidid>0000-0003-1597-0141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.7b00510$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.7b00510$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29272116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walsh, Christopher T</creatorcontrib><creatorcontrib>Tu, Benjamin P</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><title>Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NADH, and acetyl-CoA (Figure ) at the molecular level play such central roles. Yet, without those insights into why cells accumulate them and how the enabling properties of these key metabolites power much of cell metabolism, the underlying molecular logic remains mysterious. Four other metabolites, S-adenosylmethionine, carbamoyl phosphate, UDP-glucose, and Δ2-isopentenyl-PP play similar roles in using group transfer chemistry to drive otherwise unfavorable biosynthetic equilibria. This review provides the underlying chemical logic to remind how these seven key molecules function as mobile packets of cellular currencies for phosphoryl transfers (ATP), acyl transfers (acetyl-CoA, carbamoyl-P), methyl transfers (SAM), prenyl transfers (IPP), glucosyl transfers (UDP-glucose), and electron and ADP-ribosyl transfers (NAD(P)H/NAD(P)+) to drive metabolic transformations in and across most primary pathways. The eighth key metabolite is molecular oxygen (O2), thermodynamically activated for reduction by one electron path, leaving it kinetically stable to the vast majority of organic cellular metabolites.</description><subject>acetyl coenzyme A</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Adenosine - metabolism</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>biosynthesis</subject><subject>Cells</subject><subject>chemistry</subject><subject>Currencies</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Isomerism</subject><subject>Kinetics</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Molecules</subject><subject>NAD (coenzyme)</subject><subject>NAD - metabolism</subject><subject>NADP (coenzyme)</subject><subject>NADP - metabolism</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxygen</subject><subject>Packets (communication)</subject><subject>phosphates</subject><subject>Phosphorus Compounds - metabolism</subject><subject>Polypropylene</subject><subject>Protein Processing, Post-Translational</subject><subject>S-adenosylmethionine</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>Thermodynamics</subject><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV9rFDEUxYModq1-AkEGfOnLbG-SSWbyIpSl_sEWBeujhEzmbmdKZlKTzMp-e1N2XNQHfQrh_s5J7jmEvKSwpsDoubFxbXscA-7WdQsgKDwiKyoYlLJR8JisAECVTEpxQp7FeJevQrD6KTlhitWMUrki3y6H2z4VH4cJ02CNc_viSzKtw6KdU3HTYxh9t5_MuAwvbBp2JmFXXHuHdnYYi9SbVHz2PzAUG3SuuMbs4N0Qx-fkyda4iC-W85R8fXt5s3lfXn1692FzcVUaATKV0jZc1ghNu22AY0WxU5XtODIGlbC2khR5VUNDGfAGsG45Y6rqpOB5yDt-St4cfO_ndsTO4pSCcfo-DKMJe-3NoP-cTEOvb_1Oi4bnwKpscLYYBP99xpj0OESblzET-jlqRjltVI5N_BelqlaqBg40o6__Qu_8HKachGbAOFeSSpUpfqBs8DEG3B7_TUE_NK1z03ppWi9NZ9Wr31c-an5Vm4HzA_CgPr77L8ufWsO3RQ</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Walsh, Christopher T</creator><creator>Tu, Benjamin P</creator><creator>Tang, Yi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1597-0141</orcidid></search><sort><creationdate>20180228</creationdate><title>Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism</title><author>Walsh, Christopher T ; Tu, Benjamin P ; Tang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a506t-6c8367e08bf803e41ed94cd3e22045cc461e34708120380e7b32294d653cc43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acetyl coenzyme A</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Adenosine - metabolism</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>biosynthesis</topic><topic>Cells</topic><topic>chemistry</topic><topic>Currencies</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Isomerism</topic><topic>Kinetics</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Molecules</topic><topic>NAD (coenzyme)</topic><topic>NAD - metabolism</topic><topic>NADP (coenzyme)</topic><topic>NADP - metabolism</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxygen</topic><topic>Packets (communication)</topic><topic>phosphates</topic><topic>Phosphorus Compounds - metabolism</topic><topic>Polypropylene</topic><topic>Protein Processing, Post-Translational</topic><topic>S-adenosylmethionine</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsh, Christopher T</creatorcontrib><creatorcontrib>Tu, Benjamin P</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsh, Christopher T</au><au>Tu, Benjamin P</au><au>Tang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2018-02-28</date><risdate>2018</risdate><volume>118</volume><issue>4</issue><spage>1460</spage><epage>1494</epage><pages>1460-1494</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>Contemporary analyses of cell metabolism have called out three metabolites: ATP, NADH, and acetyl-CoA, as sentinel molecules whose accumulation represent much of the purpose of the catabolic arms of metabolism and then drive many anabolic pathways. Such analyses largely leave out how and why ATP, NADH, and acetyl-CoA (Figure ) at the molecular level play such central roles. Yet, without those insights into why cells accumulate them and how the enabling properties of these key metabolites power much of cell metabolism, the underlying molecular logic remains mysterious. Four other metabolites, S-adenosylmethionine, carbamoyl phosphate, UDP-glucose, and Δ2-isopentenyl-PP play similar roles in using group transfer chemistry to drive otherwise unfavorable biosynthetic equilibria. This review provides the underlying chemical logic to remind how these seven key molecules function as mobile packets of cellular currencies for phosphoryl transfers (ATP), acyl transfers (acetyl-CoA, carbamoyl-P), methyl transfers (SAM), prenyl transfers (IPP), glucosyl transfers (UDP-glucose), and electron and ADP-ribosyl transfers (NAD(P)H/NAD(P)+) to drive metabolic transformations in and across most primary pathways. The eighth key metabolite is molecular oxygen (O2), thermodynamically activated for reduction by one electron path, leaving it kinetically stable to the vast majority of organic cellular metabolites.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29272116</pmid><doi>10.1021/acs.chemrev.7b00510</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-1597-0141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2018-02, Vol.118 (4), p.1460-1494 |
issn | 0009-2665 1520-6890 1520-6890 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5831524 |
source | MEDLINE; ACS Publications |
subjects | acetyl coenzyme A Acetyl Coenzyme A - metabolism Adenosine - metabolism Adenosine diphosphate Adenosine Triphosphate - metabolism biosynthesis Cells chemistry Currencies Glucose Glucose - metabolism Isomerism Kinetics Metabolic Networks and Pathways Metabolism Metabolites Molecules NAD (coenzyme) NAD - metabolism NADP (coenzyme) NADP - metabolism Nicotinamide adenine dinucleotide Oxygen Packets (communication) phosphates Phosphorus Compounds - metabolism Polypropylene Protein Processing, Post-Translational S-adenosylmethionine S-Adenosylmethionine - metabolism Thermodynamics |
title | Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eight%20Kinetically%20Stable%20but%20Thermodynamically%20Activated%20Molecules%20that%20Power%20Cell%20Metabolism&rft.jtitle=Chemical%20reviews&rft.au=Walsh,%20Christopher%20T&rft.date=2018-02-28&rft.volume=118&rft.issue=4&rft.spage=1460&rft.epage=1494&rft.pages=1460-1494&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.7b00510&rft_dat=%3Cproquest_pubme%3E1979970301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023396169&rft_id=info:pmid/29272116&rfr_iscdi=true |