Newly Developed Rat Model of Chronic Kidney Disease–Mineral Bone Disorder

Aim: Chronic kidney disease–mineral bone disorder (CKD–MBD) is associated with all-cause and cardiovascular morbidity and mortality in patients with CKD. Thus, elucidating its pathophysiological mechanisms is essential for improving the prognosis. We evaluated characteristics of CKD–MBD in a newly d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Atherosclerosis and Thrombosis 2018/02/01, Vol.25(2), pp.170-177
Hauptverfasser: Watanabe, Kentaro, Fujii, Hideki, Goto, Shunsuke, Nakai, Kentaro, Kono, Keiji, Watanabe, Shuhei, Shinohara, Masami, Nishi, Shinichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim: Chronic kidney disease–mineral bone disorder (CKD–MBD) is associated with all-cause and cardiovascular morbidity and mortality in patients with CKD. Thus, elucidating its pathophysiological mechanisms is essential for improving the prognosis. We evaluated characteristics of CKD–MBD in a newly developed CKD rat model.Methods: We used male Sprague–Dawley (SD) rats and spontaneously diabetic Torii (SDT) rats, which are used as models for nonobese type 2 diabetes. CKD was induced by 5/6 nephrectomy (Nx). At 10 weeks, the rats were classified into six groups and administered with a vehicle or a low- or high-dose paricalcitol thrice a week. At 20 weeks, the rats were sacrificed; blood and urinary biochemical analyses and histological analysis of the aorta were performed.Results: At 20 weeks, hemoglobin A1c (HbA1c) levels, blood pressure, and renal function were not significantly different among the six groups. Serum calcium and phosphate levels tended to be higher in SDT-Nx rats than in SD-Nx rats. The urinary excretion of calcium and phosphate was significantly greater in SDT-Nx rats than in SD-Nx rats. After administering paricalcitol, serum parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) levels were significantly higher in SDT-Nx rats than in SD-Nx rats. The degree of aortic calcification was significantly more severe and the aortic calcium content was significantly greater in SDT-Nx rats than in SD-Nx rats.Conclusions: We suggest that our new CKD rat model using SDT rats represents a useful CKD-MBD model, and this model was greatly influenced by paricalcitol administration. Further studies are needed to clarify the detailed mechanisms underlying this model.
ISSN:1340-3478
1880-3873
DOI:10.5551/jat.40170