Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory
Nanogap engineering of low‐dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of non...
Gespeichert in:
Veröffentlicht in: | Advanced science 2018-02, Vol.5 (2), p.1700588-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | 1700588 |
container_title | Advanced science |
container_volume | 5 |
creator | Zhang, Jian Deng, Ya Hu, Xiao Nshimiyimana, Jean Pierre Liu, Siyu Chi, Xiannian Wu, Pei Dong, Fengliang Chen, Peipei Chu, Weiguo Zhou, Haiqing Sun, Lianfeng |
description | Nanogap engineering of low‐dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10−19 J bit−1), ON/OFF ratio of 105, stable switching ON operations, and over 30 h retention time in ambient conditions.
A novel design of nonvolatile memory device based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is demonstrated. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with a nanoscale region. The memory devices have ultralow power consumption and exhibit excellent performance in ambient conditions. |
doi_str_mv | 10.1002/advs.201700588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5827012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022130674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4621-ff290a7175e2e94780bf290b801e6c05d271ee7a588bf4cce967202137ae451c3</originalsourceid><addsrcrecordid>eNqFkc1O4zAUhS3ECBDDliWKxIZNO_c6TpxskBCUAYkZkPjZWo57U4KcuNj9UXfzCDwjT4KrMhWwYWXL9_O55-gwto_QRwD-Sw9noc8BJUBWFBtsh2NZ9NJCiM0P9222F8ITAGCWSoHFFtvmZY5lCnKHXf7VnRvp8eu_l0E3ajoirytLycCSmXjXknnUXWO0TW4XYUJtUjuf3NuJ19bNkxs3J5_8odb5xU_2o9Y20N77ucvuzwd3pxe9q-vfl6cnVz0jco69uuYlaIkyI06lkAVUy5eqAKTcQDbkEomkjoGqWhhDZS45cEylJpGhSXfZ8Up3PK1aGhrqlmbU2Det9gvldKM-T7rmUY3cTGUFl4A8Chy9C3j3PKUwUW0TDFmrO3LToOK2uA5yKSJ6-AV9clPfxXiK8zw6LVOBkeqvKONdCJ7qtRkEtSxKLYtS66Lih4OPEdb4_1oikK6AeWNp8Y2cOjl7uBU5pm9fqJ9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262719341</pqid></control><display><type>article</type><title>Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Zhang, Jian ; Deng, Ya ; Hu, Xiao ; Nshimiyimana, Jean Pierre ; Liu, Siyu ; Chi, Xiannian ; Wu, Pei ; Dong, Fengliang ; Chen, Peipei ; Chu, Weiguo ; Zhou, Haiqing ; Sun, Lianfeng</creator><creatorcontrib>Zhang, Jian ; Deng, Ya ; Hu, Xiao ; Nshimiyimana, Jean Pierre ; Liu, Siyu ; Chi, Xiannian ; Wu, Pei ; Dong, Fengliang ; Chen, Peipei ; Chu, Weiguo ; Zhou, Haiqing ; Sun, Lianfeng</creatorcontrib><description>Nanogap engineering of low‐dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10−19 J bit−1), ON/OFF ratio of 105, stable switching ON operations, and over 30 h retention time in ambient conditions.
A novel design of nonvolatile memory device based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is demonstrated. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with a nanoscale region. The memory devices have ultralow power consumption and exhibit excellent performance in ambient conditions.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.201700588</identifier><identifier>PMID: 29619307</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Carbon ; electroburning ; Electrodes ; electromechanical systems ; Energy ; Graphene ; memory ; nanogap engineering ; Scanning electron microscopy ; Silicon ; single‐walled carbon nanotubes ; Topography</subject><ispartof>Advanced science, 2018-02, Vol.5 (2), p.1700588-n/a</ispartof><rights>2017 National Center for Nanoscience and Technology, Beijing. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4621-ff290a7175e2e94780bf290b801e6c05d271ee7a588bf4cce967202137ae451c3</citedby><cites>FETCH-LOGICAL-c4621-ff290a7175e2e94780bf290b801e6c05d271ee7a588bf4cce967202137ae451c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827012/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827012/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29619307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Deng, Ya</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Nshimiyimana, Jean Pierre</creatorcontrib><creatorcontrib>Liu, Siyu</creatorcontrib><creatorcontrib>Chi, Xiannian</creatorcontrib><creatorcontrib>Wu, Pei</creatorcontrib><creatorcontrib>Dong, Fengliang</creatorcontrib><creatorcontrib>Chen, Peipei</creatorcontrib><creatorcontrib>Chu, Weiguo</creatorcontrib><creatorcontrib>Zhou, Haiqing</creatorcontrib><creatorcontrib>Sun, Lianfeng</creatorcontrib><title>Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Nanogap engineering of low‐dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10−19 J bit−1), ON/OFF ratio of 105, stable switching ON operations, and over 30 h retention time in ambient conditions.
A novel design of nonvolatile memory device based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is demonstrated. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with a nanoscale region. The memory devices have ultralow power consumption and exhibit excellent performance in ambient conditions.</description><subject>Carbon</subject><subject>electroburning</subject><subject>Electrodes</subject><subject>electromechanical systems</subject><subject>Energy</subject><subject>Graphene</subject><subject>memory</subject><subject>nanogap engineering</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>single‐walled carbon nanotubes</subject><subject>Topography</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1O4zAUhS3ECBDDliWKxIZNO_c6TpxskBCUAYkZkPjZWo57U4KcuNj9UXfzCDwjT4KrMhWwYWXL9_O55-gwto_QRwD-Sw9noc8BJUBWFBtsh2NZ9NJCiM0P9222F8ITAGCWSoHFFtvmZY5lCnKHXf7VnRvp8eu_l0E3ajoirytLycCSmXjXknnUXWO0TW4XYUJtUjuf3NuJ19bNkxs3J5_8odb5xU_2o9Y20N77ucvuzwd3pxe9q-vfl6cnVz0jco69uuYlaIkyI06lkAVUy5eqAKTcQDbkEomkjoGqWhhDZS45cEylJpGhSXfZ8Up3PK1aGhrqlmbU2Det9gvldKM-T7rmUY3cTGUFl4A8Chy9C3j3PKUwUW0TDFmrO3LToOK2uA5yKSJ6-AV9clPfxXiK8zw6LVOBkeqvKONdCJ7qtRkEtSxKLYtS66Lih4OPEdb4_1oikK6AeWNp8Y2cOjl7uBU5pm9fqJ9w</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Zhang, Jian</creator><creator>Deng, Ya</creator><creator>Hu, Xiao</creator><creator>Nshimiyimana, Jean Pierre</creator><creator>Liu, Siyu</creator><creator>Chi, Xiannian</creator><creator>Wu, Pei</creator><creator>Dong, Fengliang</creator><creator>Chen, Peipei</creator><creator>Chu, Weiguo</creator><creator>Zhou, Haiqing</creator><creator>Sun, Lianfeng</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201802</creationdate><title>Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory</title><author>Zhang, Jian ; Deng, Ya ; Hu, Xiao ; Nshimiyimana, Jean Pierre ; Liu, Siyu ; Chi, Xiannian ; Wu, Pei ; Dong, Fengliang ; Chen, Peipei ; Chu, Weiguo ; Zhou, Haiqing ; Sun, Lianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4621-ff290a7175e2e94780bf290b801e6c05d271ee7a588bf4cce967202137ae451c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>electroburning</topic><topic>Electrodes</topic><topic>electromechanical systems</topic><topic>Energy</topic><topic>Graphene</topic><topic>memory</topic><topic>nanogap engineering</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>single‐walled carbon nanotubes</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Deng, Ya</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Nshimiyimana, Jean Pierre</creatorcontrib><creatorcontrib>Liu, Siyu</creatorcontrib><creatorcontrib>Chi, Xiannian</creatorcontrib><creatorcontrib>Wu, Pei</creatorcontrib><creatorcontrib>Dong, Fengliang</creatorcontrib><creatorcontrib>Chen, Peipei</creatorcontrib><creatorcontrib>Chu, Weiguo</creatorcontrib><creatorcontrib>Zhou, Haiqing</creatorcontrib><creatorcontrib>Sun, Lianfeng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jian</au><au>Deng, Ya</au><au>Hu, Xiao</au><au>Nshimiyimana, Jean Pierre</au><au>Liu, Siyu</au><au>Chi, Xiannian</au><au>Wu, Pei</au><au>Dong, Fengliang</au><au>Chen, Peipei</au><au>Chu, Weiguo</au><au>Zhou, Haiqing</au><au>Sun, Lianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2018-02</date><risdate>2018</risdate><volume>5</volume><issue>2</issue><spage>1700588</spage><epage>n/a</epage><pages>1700588-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Nanogap engineering of low‐dimensional nanomaterials has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrication of the devices. Here, a rational design of nonvolatile memories based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is reported. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with nanoscale region. The SWNT memory devices are applicable for both metallic and semiconducting SWNTs, resolving the challenge of separation of semiconducting SWNTs from metallic ones. Meanwhile, the memory devices exhibit excellent performance: ultralow writing energy (4.1 × 10−19 J bit−1), ON/OFF ratio of 105, stable switching ON operations, and over 30 h retention time in ambient conditions.
A novel design of nonvolatile memory device based on sub‐5 nm nanogaped single‐walled carbon nanotubes (SWNTs) via the electromechanical motion is demonstrated. The nanogaps are readily realized by electroburning in a partially suspended SWNT device with a nanoscale region. The memory devices have ultralow power consumption and exhibit excellent performance in ambient conditions.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>29619307</pmid><doi>10.1002/advs.201700588</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2018-02, Vol.5 (2), p.1700588-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5827012 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Carbon electroburning Electrodes electromechanical systems Energy Graphene memory nanogap engineering Scanning electron microscopy Silicon single‐walled carbon nanotubes Topography |
title | Nanogap‐Engineerable Electromechanical System for Ultralow Power Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanogap%E2%80%90Engineerable%20Electromechanical%20System%20for%20Ultralow%20Power%20Memory&rft.jtitle=Advanced%20science&rft.au=Zhang,%20Jian&rft.date=2018-02&rft.volume=5&rft.issue=2&rft.spage=1700588&rft.epage=n/a&rft.pages=1700588-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.201700588&rft_dat=%3Cproquest_pubme%3E2022130674%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262719341&rft_id=info:pmid/29619307&rfr_iscdi=true |