The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168

Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2018-03, Vol.20 (3), p.320-331
Hauptverfasser: Xie, Xiaoduo, Hu, Hongli, Tong, Xinyuan, Li, Long, Liu, Xiangyuan, Chen, Min, Yuan, Huairui, Xie, Xia, Li, Qingrun, Zhang, Yuxue, Ouyang, Huafang, Wei, Mengqi, Huang, Jing, Liu, Pengda, Gan, Wenjian, Liu, Yong, Xie, Anyong, Kuai, Xiaoling, Chirn, Gung-Wei, Zhou, Hu, Zeng, Rong, Hu, Ronggui, Qin, Jun, Meng, Fei-Long, Wei, Wenyi, Ji, Hongbin, Gao, Daming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 3
container_start_page 320
container_title Nature cell biology
container_volume 20
creator Xie, Xiaoduo
Hu, Hongli
Tong, Xinyuan
Li, Long
Liu, Xiangyuan
Chen, Min
Yuan, Huairui
Xie, Xia
Li, Qingrun
Zhang, Yuxue
Ouyang, Huafang
Wei, Mengqi
Huang, Jing
Liu, Pengda
Gan, Wenjian
Liu, Yong
Xie, Anyong
Kuai, Xiaoling
Chirn, Gung-Wei
Zhou, Hu
Zeng, Rong
Hu, Ronggui
Qin, Jun
Meng, Fei-Long
Wei, Wenyi
Ji, Hongbin
Gao, Daming
description Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 ( LKB1 ; also known as STK11 ) hyperactivates mTOR complex 1 (mTORC1)–S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by Lkb1 loss. These results reveal an important function of mTORC1–S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control. Xie and colleagues find that activated mTORC1 growth signalling impairs DNA repair through S6K-mediated phosphorylation and inhibition of the RNF168 ligase.
doi_str_mv 10.1038/s41556-017-0033-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572603202</galeid><sourcerecordid>A572603202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-1809aec3b7ef7c0961d072fd0b5bdfc3b0c48dc4ea7cee52e4b2544d6c0a73eb3</originalsourceid><addsrcrecordid>eNp1ks1u1DAUhSMEoqXwAGyQJTawSHv9EzvZII0KhYqqlabDgpXlODeZlCQe7AxldrwDb8iT4Gj6wyCQF7bu_c658tVJkucUDinw_CgImmUyBapSAM7T_EGyT4WSqZCqeDi9ZZYqXrC95EkIVwBUCFCPkz1WCODA1X7yebFE0i8u5r9-_LyUH8nKjMtrsyFdO3wJpPHuelyS0DaD6WKpIaMjb89npDK9aZB4DCs3BCTlhozGNzhOzPz8hMr8afKoNl3AZzf3QfLp5N3i-EN6dvH-9Hh2ltpM0TGlORQGLS8V1spCIWkFitUVlFlZ1bEOVuSVFWiURcwYipJlQlTSglEcS36QvNn6rtZlj5XFYfSm0yvf9sZvtDOt3u0M7VI37pvOciZzkNHg1Y2Bd1_XGEbdt8Fi15kB3TpoWhQZlZSzCX35F3rl1j7uJmgGoGSupFD3VGM61O1QuzjXTqZ6likmgTNgkTr8BxVPhX1r3YB1G-s7gtc7gsiM-H1szDoEfXo532XplrXeheCxvtsHBT1lR2-zo2N29JQdnUfNiz8Xeae4DUsE2BYIsTU06O9__3_X325nzWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007687647</pqid></control><display><type>article</type><title>The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Xie, Xiaoduo ; Hu, Hongli ; Tong, Xinyuan ; Li, Long ; Liu, Xiangyuan ; Chen, Min ; Yuan, Huairui ; Xie, Xia ; Li, Qingrun ; Zhang, Yuxue ; Ouyang, Huafang ; Wei, Mengqi ; Huang, Jing ; Liu, Pengda ; Gan, Wenjian ; Liu, Yong ; Xie, Anyong ; Kuai, Xiaoling ; Chirn, Gung-Wei ; Zhou, Hu ; Zeng, Rong ; Hu, Ronggui ; Qin, Jun ; Meng, Fei-Long ; Wei, Wenyi ; Ji, Hongbin ; Gao, Daming</creator><creatorcontrib>Xie, Xiaoduo ; Hu, Hongli ; Tong, Xinyuan ; Li, Long ; Liu, Xiangyuan ; Chen, Min ; Yuan, Huairui ; Xie, Xia ; Li, Qingrun ; Zhang, Yuxue ; Ouyang, Huafang ; Wei, Mengqi ; Huang, Jing ; Liu, Pengda ; Gan, Wenjian ; Liu, Yong ; Xie, Anyong ; Kuai, Xiaoling ; Chirn, Gung-Wei ; Zhou, Hu ; Zeng, Rong ; Hu, Ronggui ; Qin, Jun ; Meng, Fei-Long ; Wei, Wenyi ; Ji, Hongbin ; Gao, Daming</creatorcontrib><description>Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 ( LKB1 ; also known as STK11 ) hyperactivates mTOR complex 1 (mTORC1)–S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by Lkb1 loss. These results reveal an important function of mTORC1–S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control. Xie and colleagues find that activated mTORC1 growth signalling impairs DNA repair through S6K-mediated phosphorylation and inhibition of the RNF168 ligase.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-017-0033-8</identifier><identifier>PMID: 29403037</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/109 ; 13/31 ; 13/44 ; 13/51 ; 13/89 ; 13/95 ; 14/19 ; 14/63 ; 38/77 ; 631/337/1427 ; 631/80/474/2073 ; 631/80/641/83/2359 ; 82/80 ; 82/83 ; A549 Cells ; Amino acids ; Animals ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell Proliferation ; Control stability ; Damage accumulation ; Defects ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; Female ; Gene expression ; Genomes ; Genomic instability ; Genomics ; Growth factors ; HCT116 Cells ; HEK293 Cells ; Humans ; Ionizing radiation ; Life Sciences ; Ligases ; Liver ; LKB1 protein ; Male ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Mice, Transgenic ; Neoplasms - enzymology ; Neoplasms - genetics ; Neoplasms - pathology ; Nutrients ; Phosphorylation ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteolysis ; Rapamycin ; Ribosomal protein S6 kinase ; Ribosomal Protein S6 Kinases, 70-kDa - genetics ; Ribosomal Protein S6 Kinases, 70-kDa - metabolism ; Ribosomal Protein S6 Kinases, 90-kDa - genetics ; Ribosomal Protein S6 Kinases, 90-kDa - metabolism ; Signal Transduction ; Signaling ; Stability ; Stem Cells ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Tumor Burden ; Tumorigenesis ; Tumors ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Nature cell biology, 2018-03, Vol.20 (3), p.320-331</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-1809aec3b7ef7c0961d072fd0b5bdfc3b0c48dc4ea7cee52e4b2544d6c0a73eb3</citedby><cites>FETCH-LOGICAL-c571t-1809aec3b7ef7c0961d072fd0b5bdfc3b0c48dc4ea7cee52e4b2544d6c0a73eb3</cites><orcidid>0000-0003-0891-6390 ; 0000-0003-0512-3811 ; 0000-0003-4374-1055 ; 0000-0002-1644-0508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29403037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Xiaoduo</creatorcontrib><creatorcontrib>Hu, Hongli</creatorcontrib><creatorcontrib>Tong, Xinyuan</creatorcontrib><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Liu, Xiangyuan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Yuan, Huairui</creatorcontrib><creatorcontrib>Xie, Xia</creatorcontrib><creatorcontrib>Li, Qingrun</creatorcontrib><creatorcontrib>Zhang, Yuxue</creatorcontrib><creatorcontrib>Ouyang, Huafang</creatorcontrib><creatorcontrib>Wei, Mengqi</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Liu, Pengda</creatorcontrib><creatorcontrib>Gan, Wenjian</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Xie, Anyong</creatorcontrib><creatorcontrib>Kuai, Xiaoling</creatorcontrib><creatorcontrib>Chirn, Gung-Wei</creatorcontrib><creatorcontrib>Zhou, Hu</creatorcontrib><creatorcontrib>Zeng, Rong</creatorcontrib><creatorcontrib>Hu, Ronggui</creatorcontrib><creatorcontrib>Qin, Jun</creatorcontrib><creatorcontrib>Meng, Fei-Long</creatorcontrib><creatorcontrib>Wei, Wenyi</creatorcontrib><creatorcontrib>Ji, Hongbin</creatorcontrib><creatorcontrib>Gao, Daming</creatorcontrib><title>The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 ( LKB1 ; also known as STK11 ) hyperactivates mTOR complex 1 (mTORC1)–S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by Lkb1 loss. These results reveal an important function of mTORC1–S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control. Xie and colleagues find that activated mTORC1 growth signalling impairs DNA repair through S6K-mediated phosphorylation and inhibition of the RNF168 ligase.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>13/44</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>14/19</subject><subject>14/63</subject><subject>38/77</subject><subject>631/337/1427</subject><subject>631/80/474/2073</subject><subject>631/80/641/83/2359</subject><subject>82/80</subject><subject>82/83</subject><subject>A549 Cells</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Proliferation</subject><subject>Control stability</subject><subject>Damage accumulation</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Genomics</subject><subject>Growth factors</subject><subject>HCT116 Cells</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Ionizing radiation</subject><subject>Life Sciences</subject><subject>Ligases</subject><subject>Liver</subject><subject>LKB1 protein</subject><subject>Male</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Mice, Transgenic</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Nutrients</subject><subject>Phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteolysis</subject><subject>Rapamycin</subject><subject>Ribosomal protein S6 kinase</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - genetics</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</subject><subject>Ribosomal Protein S6 Kinases, 90-kDa - genetics</subject><subject>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Stability</subject><subject>Stem Cells</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tumor Burden</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1ks1u1DAUhSMEoqXwAGyQJTawSHv9EzvZII0KhYqqlabDgpXlODeZlCQe7AxldrwDb8iT4Gj6wyCQF7bu_c658tVJkucUDinw_CgImmUyBapSAM7T_EGyT4WSqZCqeDi9ZZYqXrC95EkIVwBUCFCPkz1WCODA1X7yebFE0i8u5r9-_LyUH8nKjMtrsyFdO3wJpPHuelyS0DaD6WKpIaMjb89npDK9aZB4DCs3BCTlhozGNzhOzPz8hMr8afKoNl3AZzf3QfLp5N3i-EN6dvH-9Hh2ltpM0TGlORQGLS8V1spCIWkFitUVlFlZ1bEOVuSVFWiURcwYipJlQlTSglEcS36QvNn6rtZlj5XFYfSm0yvf9sZvtDOt3u0M7VI37pvOciZzkNHg1Y2Bd1_XGEbdt8Fi15kB3TpoWhQZlZSzCX35F3rl1j7uJmgGoGSupFD3VGM61O1QuzjXTqZ6likmgTNgkTr8BxVPhX1r3YB1G-s7gtc7gsiM-H1szDoEfXo532XplrXeheCxvtsHBT1lR2-zo2N29JQdnUfNiz8Xeae4DUsE2BYIsTU06O9__3_X325nzWw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Xie, Xiaoduo</creator><creator>Hu, Hongli</creator><creator>Tong, Xinyuan</creator><creator>Li, Long</creator><creator>Liu, Xiangyuan</creator><creator>Chen, Min</creator><creator>Yuan, Huairui</creator><creator>Xie, Xia</creator><creator>Li, Qingrun</creator><creator>Zhang, Yuxue</creator><creator>Ouyang, Huafang</creator><creator>Wei, Mengqi</creator><creator>Huang, Jing</creator><creator>Liu, Pengda</creator><creator>Gan, Wenjian</creator><creator>Liu, Yong</creator><creator>Xie, Anyong</creator><creator>Kuai, Xiaoling</creator><creator>Chirn, Gung-Wei</creator><creator>Zhou, Hu</creator><creator>Zeng, Rong</creator><creator>Hu, Ronggui</creator><creator>Qin, Jun</creator><creator>Meng, Fei-Long</creator><creator>Wei, Wenyi</creator><creator>Ji, Hongbin</creator><creator>Gao, Daming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0891-6390</orcidid><orcidid>https://orcid.org/0000-0003-0512-3811</orcidid><orcidid>https://orcid.org/0000-0003-4374-1055</orcidid><orcidid>https://orcid.org/0000-0002-1644-0508</orcidid></search><sort><creationdate>20180301</creationdate><title>The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168</title><author>Xie, Xiaoduo ; Hu, Hongli ; Tong, Xinyuan ; Li, Long ; Liu, Xiangyuan ; Chen, Min ; Yuan, Huairui ; Xie, Xia ; Li, Qingrun ; Zhang, Yuxue ; Ouyang, Huafang ; Wei, Mengqi ; Huang, Jing ; Liu, Pengda ; Gan, Wenjian ; Liu, Yong ; Xie, Anyong ; Kuai, Xiaoling ; Chirn, Gung-Wei ; Zhou, Hu ; Zeng, Rong ; Hu, Ronggui ; Qin, Jun ; Meng, Fei-Long ; Wei, Wenyi ; Ji, Hongbin ; Gao, Daming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-1809aec3b7ef7c0961d072fd0b5bdfc3b0c48dc4ea7cee52e4b2544d6c0a73eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>13/44</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>14/19</topic><topic>14/63</topic><topic>38/77</topic><topic>631/337/1427</topic><topic>631/80/474/2073</topic><topic>631/80/641/83/2359</topic><topic>82/80</topic><topic>82/83</topic><topic>A549 Cells</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Proliferation</topic><topic>Control stability</topic><topic>Damage accumulation</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Genomics</topic><topic>Growth factors</topic><topic>HCT116 Cells</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Ionizing radiation</topic><topic>Life Sciences</topic><topic>Ligases</topic><topic>Liver</topic><topic>LKB1 protein</topic><topic>Male</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Mice, Transgenic</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Nutrients</topic><topic>Phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteolysis</topic><topic>Rapamycin</topic><topic>Ribosomal protein S6 kinase</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - genetics</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</topic><topic>Ribosomal Protein S6 Kinases, 90-kDa - genetics</topic><topic>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Stability</topic><topic>Stem Cells</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tumor Burden</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiaoduo</creatorcontrib><creatorcontrib>Hu, Hongli</creatorcontrib><creatorcontrib>Tong, Xinyuan</creatorcontrib><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Liu, Xiangyuan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Yuan, Huairui</creatorcontrib><creatorcontrib>Xie, Xia</creatorcontrib><creatorcontrib>Li, Qingrun</creatorcontrib><creatorcontrib>Zhang, Yuxue</creatorcontrib><creatorcontrib>Ouyang, Huafang</creatorcontrib><creatorcontrib>Wei, Mengqi</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Liu, Pengda</creatorcontrib><creatorcontrib>Gan, Wenjian</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Xie, Anyong</creatorcontrib><creatorcontrib>Kuai, Xiaoling</creatorcontrib><creatorcontrib>Chirn, Gung-Wei</creatorcontrib><creatorcontrib>Zhou, Hu</creatorcontrib><creatorcontrib>Zeng, Rong</creatorcontrib><creatorcontrib>Hu, Ronggui</creatorcontrib><creatorcontrib>Qin, Jun</creatorcontrib><creatorcontrib>Meng, Fei-Long</creatorcontrib><creatorcontrib>Wei, Wenyi</creatorcontrib><creatorcontrib>Ji, Hongbin</creatorcontrib><creatorcontrib>Gao, Daming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xiaoduo</au><au>Hu, Hongli</au><au>Tong, Xinyuan</au><au>Li, Long</au><au>Liu, Xiangyuan</au><au>Chen, Min</au><au>Yuan, Huairui</au><au>Xie, Xia</au><au>Li, Qingrun</au><au>Zhang, Yuxue</au><au>Ouyang, Huafang</au><au>Wei, Mengqi</au><au>Huang, Jing</au><au>Liu, Pengda</au><au>Gan, Wenjian</au><au>Liu, Yong</au><au>Xie, Anyong</au><au>Kuai, Xiaoling</au><au>Chirn, Gung-Wei</au><au>Zhou, Hu</au><au>Zeng, Rong</au><au>Hu, Ronggui</au><au>Qin, Jun</au><au>Meng, Fei-Long</au><au>Wei, Wenyi</au><au>Ji, Hongbin</au><au>Gao, Daming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>20</volume><issue>3</issue><spage>320</spage><epage>331</epage><pages>320-331</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 ( LKB1 ; also known as STK11 ) hyperactivates mTOR complex 1 (mTORC1)–S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by Lkb1 loss. These results reveal an important function of mTORC1–S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control. Xie and colleagues find that activated mTORC1 growth signalling impairs DNA repair through S6K-mediated phosphorylation and inhibition of the RNF168 ligase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29403037</pmid><doi>10.1038/s41556-017-0033-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0891-6390</orcidid><orcidid>https://orcid.org/0000-0003-0512-3811</orcidid><orcidid>https://orcid.org/0000-0003-4374-1055</orcidid><orcidid>https://orcid.org/0000-0002-1644-0508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2018-03, Vol.20 (3), p.320-331
issn 1465-7392
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826806
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 13/1
13/106
13/109
13/31
13/44
13/51
13/89
13/95
14/19
14/63
38/77
631/337/1427
631/80/474/2073
631/80/641/83/2359
82/80
82/83
A549 Cells
Amino acids
Animals
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cell Proliferation
Control stability
Damage accumulation
Defects
Deoxyribonucleic acid
Developmental Biology
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA Repair
Female
Gene expression
Genomes
Genomic instability
Genomics
Growth factors
HCT116 Cells
HEK293 Cells
Humans
Ionizing radiation
Life Sciences
Ligases
Liver
LKB1 protein
Male
Mechanistic Target of Rapamycin Complex 1 - genetics
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
Mice, Inbred BALB C
Mice, Nude
Mice, Transgenic
Neoplasms - enzymology
Neoplasms - genetics
Neoplasms - pathology
Nutrients
Phosphorylation
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Proteolysis
Rapamycin
Ribosomal protein S6 kinase
Ribosomal Protein S6 Kinases, 70-kDa - genetics
Ribosomal Protein S6 Kinases, 70-kDa - metabolism
Ribosomal Protein S6 Kinases, 90-kDa - genetics
Ribosomal Protein S6 Kinases, 90-kDa - metabolism
Signal Transduction
Signaling
Stability
Stem Cells
TOR protein
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Tumor Burden
Tumorigenesis
Tumors
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
title The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mTOR%E2%80%93S6K%20pathway%20links%20growth%20signalling%20to%20DNA%20damage%20response%20by%20targeting%20RNF168&rft.jtitle=Nature%20cell%20biology&rft.au=Xie,%20Xiaoduo&rft.date=2018-03-01&rft.volume=20&rft.issue=3&rft.spage=320&rft.epage=331&rft.pages=320-331&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-017-0033-8&rft_dat=%3Cgale_pubme%3EA572603202%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007687647&rft_id=info:pmid/29403037&rft_galeid=A572603202&rfr_iscdi=true