The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168
Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signal...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2018-03, Vol.20 (3), p.320-331 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | 3 |
container_start_page | 320 |
container_title | Nature cell biology |
container_volume | 20 |
creator | Xie, Xiaoduo Hu, Hongli Tong, Xinyuan Li, Long Liu, Xiangyuan Chen, Min Yuan, Huairui Xie, Xia Li, Qingrun Zhang, Yuxue Ouyang, Huafang Wei, Mengqi Huang, Jing Liu, Pengda Gan, Wenjian Liu, Yong Xie, Anyong Kuai, Xiaoling Chirn, Gung-Wei Zhou, Hu Zeng, Rong Hu, Ronggui Qin, Jun Meng, Fei-Long Wei, Wenyi Ji, Hongbin Gao, Daming |
description | Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 (
LKB1
; also known as
STK11
) hyperactivates mTOR complex 1 (mTORC1)–S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by
Lkb1
loss. These results reveal an important function of mTORC1–S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control.
Xie and colleagues find that activated mTORC1 growth signalling impairs DNA repair through S6K-mediated phosphorylation and inhibition of the RNF168 ligase. |
doi_str_mv | 10.1038/s41556-017-0033-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572603202</galeid><sourcerecordid>A572603202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-1809aec3b7ef7c0961d072fd0b5bdfc3b0c48dc4ea7cee52e4b2544d6c0a73eb3</originalsourceid><addsrcrecordid>eNp1ks1u1DAUhSMEoqXwAGyQJTawSHv9EzvZII0KhYqqlabDgpXlODeZlCQe7AxldrwDb8iT4Gj6wyCQF7bu_c658tVJkucUDinw_CgImmUyBapSAM7T_EGyT4WSqZCqeDi9ZZYqXrC95EkIVwBUCFCPkz1WCODA1X7yebFE0i8u5r9-_LyUH8nKjMtrsyFdO3wJpPHuelyS0DaD6WKpIaMjb89npDK9aZB4DCs3BCTlhozGNzhOzPz8hMr8afKoNl3AZzf3QfLp5N3i-EN6dvH-9Hh2ltpM0TGlORQGLS8V1spCIWkFitUVlFlZ1bEOVuSVFWiURcwYipJlQlTSglEcS36QvNn6rtZlj5XFYfSm0yvf9sZvtDOt3u0M7VI37pvOciZzkNHg1Y2Bd1_XGEbdt8Fi15kB3TpoWhQZlZSzCX35F3rl1j7uJmgGoGSupFD3VGM61O1QuzjXTqZ6likmgTNgkTr8BxVPhX1r3YB1G-s7gtc7gsiM-H1szDoEfXo532XplrXeheCxvtsHBT1lR2-zo2N29JQdnUfNiz8Xeae4DUsE2BYIsTU06O9__3_X325nzWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007687647</pqid></control><display><type>article</type><title>The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Xie, Xiaoduo ; Hu, Hongli ; Tong, Xinyuan ; Li, Long ; Liu, Xiangyuan ; Chen, Min ; Yuan, Huairui ; Xie, Xia ; Li, Qingrun ; Zhang, Yuxue ; Ouyang, Huafang ; Wei, Mengqi ; Huang, Jing ; Liu, Pengda ; Gan, Wenjian ; Liu, Yong ; Xie, Anyong ; Kuai, Xiaoling ; Chirn, Gung-Wei ; Zhou, Hu ; Zeng, Rong ; Hu, Ronggui ; Qin, Jun ; Meng, Fei-Long ; Wei, Wenyi ; Ji, Hongbin ; Gao, Daming</creator><creatorcontrib>Xie, Xiaoduo ; Hu, Hongli ; Tong, Xinyuan ; Li, Long ; Liu, Xiangyuan ; Chen, Min ; Yuan, Huairui ; Xie, Xia ; Li, Qingrun ; Zhang, Yuxue ; Ouyang, Huafang ; Wei, Mengqi ; Huang, Jing ; Liu, Pengda ; Gan, Wenjian ; Liu, Yong ; Xie, Anyong ; Kuai, Xiaoling ; Chirn, Gung-Wei ; Zhou, Hu ; Zeng, Rong ; Hu, Ronggui ; Qin, Jun ; Meng, Fei-Long ; Wei, Wenyi ; Ji, Hongbin ; Gao, Daming</creatorcontrib><description>Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 (
LKB1
; also known as
STK11
) hyperactivates mTOR complex 1 (mTORC1)–S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by
Lkb1
loss. These results reveal an important function of mTORC1–S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control.
Xie and colleagues find that activated mTORC1 growth signalling impairs DNA repair through S6K-mediated phosphorylation and inhibition of the RNF168 ligase.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-017-0033-8</identifier><identifier>PMID: 29403037</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/109 ; 13/31 ; 13/44 ; 13/51 ; 13/89 ; 13/95 ; 14/19 ; 14/63 ; 38/77 ; 631/337/1427 ; 631/80/474/2073 ; 631/80/641/83/2359 ; 82/80 ; 82/83 ; A549 Cells ; Amino acids ; Animals ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell Proliferation ; Control stability ; Damage accumulation ; Defects ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; Female ; Gene expression ; Genomes ; Genomic instability ; Genomics ; Growth factors ; HCT116 Cells ; HEK293 Cells ; Humans ; Ionizing radiation ; Life Sciences ; Ligases ; Liver ; LKB1 protein ; Male ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Mice, Transgenic ; Neoplasms - enzymology ; Neoplasms - genetics ; Neoplasms - pathology ; Nutrients ; Phosphorylation ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteolysis ; Rapamycin ; Ribosomal protein S6 kinase ; Ribosomal Protein S6 Kinases, 70-kDa - genetics ; Ribosomal Protein S6 Kinases, 70-kDa - metabolism ; Ribosomal Protein S6 Kinases, 90-kDa - genetics ; Ribosomal Protein S6 Kinases, 90-kDa - metabolism ; Signal Transduction ; Signaling ; Stability ; Stem Cells ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Tumor Burden ; Tumorigenesis ; Tumors ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Nature cell biology, 2018-03, Vol.20 (3), p.320-331</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-1809aec3b7ef7c0961d072fd0b5bdfc3b0c48dc4ea7cee52e4b2544d6c0a73eb3</citedby><cites>FETCH-LOGICAL-c571t-1809aec3b7ef7c0961d072fd0b5bdfc3b0c48dc4ea7cee52e4b2544d6c0a73eb3</cites><orcidid>0000-0003-0891-6390 ; 0000-0003-0512-3811 ; 0000-0003-4374-1055 ; 0000-0002-1644-0508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29403037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Xiaoduo</creatorcontrib><creatorcontrib>Hu, Hongli</creatorcontrib><creatorcontrib>Tong, Xinyuan</creatorcontrib><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Liu, Xiangyuan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Yuan, Huairui</creatorcontrib><creatorcontrib>Xie, Xia</creatorcontrib><creatorcontrib>Li, Qingrun</creatorcontrib><creatorcontrib>Zhang, Yuxue</creatorcontrib><creatorcontrib>Ouyang, Huafang</creatorcontrib><creatorcontrib>Wei, Mengqi</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Liu, Pengda</creatorcontrib><creatorcontrib>Gan, Wenjian</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Xie, Anyong</creatorcontrib><creatorcontrib>Kuai, Xiaoling</creatorcontrib><creatorcontrib>Chirn, Gung-Wei</creatorcontrib><creatorcontrib>Zhou, Hu</creatorcontrib><creatorcontrib>Zeng, Rong</creatorcontrib><creatorcontrib>Hu, Ronggui</creatorcontrib><creatorcontrib>Qin, Jun</creatorcontrib><creatorcontrib>Meng, Fei-Long</creatorcontrib><creatorcontrib>Wei, Wenyi</creatorcontrib><creatorcontrib>Ji, Hongbin</creatorcontrib><creatorcontrib>Gao, Daming</creatorcontrib><title>The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 (
LKB1
; also known as
STK11
) hyperactivates mTOR complex 1 (mTORC1)–S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by
Lkb1
loss. These results reveal an important function of mTORC1–S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control.
Xie and colleagues find that activated mTORC1 growth signalling impairs DNA repair through S6K-mediated phosphorylation and inhibition of the RNF168 ligase.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>13/44</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>14/19</subject><subject>14/63</subject><subject>38/77</subject><subject>631/337/1427</subject><subject>631/80/474/2073</subject><subject>631/80/641/83/2359</subject><subject>82/80</subject><subject>82/83</subject><subject>A549 Cells</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Proliferation</subject><subject>Control stability</subject><subject>Damage accumulation</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Genomics</subject><subject>Growth factors</subject><subject>HCT116 Cells</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Ionizing radiation</subject><subject>Life Sciences</subject><subject>Ligases</subject><subject>Liver</subject><subject>LKB1 protein</subject><subject>Male</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Mice, Transgenic</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Nutrients</subject><subject>Phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteolysis</subject><subject>Rapamycin</subject><subject>Ribosomal protein S6 kinase</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - genetics</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</subject><subject>Ribosomal Protein S6 Kinases, 90-kDa - genetics</subject><subject>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Stability</subject><subject>Stem Cells</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tumor Burden</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1ks1u1DAUhSMEoqXwAGyQJTawSHv9EzvZII0KhYqqlabDgpXlODeZlCQe7AxldrwDb8iT4Gj6wyCQF7bu_c658tVJkucUDinw_CgImmUyBapSAM7T_EGyT4WSqZCqeDi9ZZYqXrC95EkIVwBUCFCPkz1WCODA1X7yebFE0i8u5r9-_LyUH8nKjMtrsyFdO3wJpPHuelyS0DaD6WKpIaMjb89npDK9aZB4DCs3BCTlhozGNzhOzPz8hMr8afKoNl3AZzf3QfLp5N3i-EN6dvH-9Hh2ltpM0TGlORQGLS8V1spCIWkFitUVlFlZ1bEOVuSVFWiURcwYipJlQlTSglEcS36QvNn6rtZlj5XFYfSm0yvf9sZvtDOt3u0M7VI37pvOciZzkNHg1Y2Bd1_XGEbdt8Fi15kB3TpoWhQZlZSzCX35F3rl1j7uJmgGoGSupFD3VGM61O1QuzjXTqZ6likmgTNgkTr8BxVPhX1r3YB1G-s7gtc7gsiM-H1szDoEfXo532XplrXeheCxvtsHBT1lR2-zo2N29JQdnUfNiz8Xeae4DUsE2BYIsTU06O9__3_X325nzWw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Xie, Xiaoduo</creator><creator>Hu, Hongli</creator><creator>Tong, Xinyuan</creator><creator>Li, Long</creator><creator>Liu, Xiangyuan</creator><creator>Chen, Min</creator><creator>Yuan, Huairui</creator><creator>Xie, Xia</creator><creator>Li, Qingrun</creator><creator>Zhang, Yuxue</creator><creator>Ouyang, Huafang</creator><creator>Wei, Mengqi</creator><creator>Huang, Jing</creator><creator>Liu, Pengda</creator><creator>Gan, Wenjian</creator><creator>Liu, Yong</creator><creator>Xie, Anyong</creator><creator>Kuai, Xiaoling</creator><creator>Chirn, Gung-Wei</creator><creator>Zhou, Hu</creator><creator>Zeng, Rong</creator><creator>Hu, Ronggui</creator><creator>Qin, Jun</creator><creator>Meng, Fei-Long</creator><creator>Wei, Wenyi</creator><creator>Ji, Hongbin</creator><creator>Gao, Daming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0891-6390</orcidid><orcidid>https://orcid.org/0000-0003-0512-3811</orcidid><orcidid>https://orcid.org/0000-0003-4374-1055</orcidid><orcidid>https://orcid.org/0000-0002-1644-0508</orcidid></search><sort><creationdate>20180301</creationdate><title>The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168</title><author>Xie, Xiaoduo ; Hu, Hongli ; Tong, Xinyuan ; Li, Long ; Liu, Xiangyuan ; Chen, Min ; Yuan, Huairui ; Xie, Xia ; Li, Qingrun ; Zhang, Yuxue ; Ouyang, Huafang ; Wei, Mengqi ; Huang, Jing ; Liu, Pengda ; Gan, Wenjian ; Liu, Yong ; Xie, Anyong ; Kuai, Xiaoling ; Chirn, Gung-Wei ; Zhou, Hu ; Zeng, Rong ; Hu, Ronggui ; Qin, Jun ; Meng, Fei-Long ; Wei, Wenyi ; Ji, Hongbin ; Gao, Daming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-1809aec3b7ef7c0961d072fd0b5bdfc3b0c48dc4ea7cee52e4b2544d6c0a73eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>13/44</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>14/19</topic><topic>14/63</topic><topic>38/77</topic><topic>631/337/1427</topic><topic>631/80/474/2073</topic><topic>631/80/641/83/2359</topic><topic>82/80</topic><topic>82/83</topic><topic>A549 Cells</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Proliferation</topic><topic>Control stability</topic><topic>Damage accumulation</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Genomics</topic><topic>Growth factors</topic><topic>HCT116 Cells</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Ionizing radiation</topic><topic>Life Sciences</topic><topic>Ligases</topic><topic>Liver</topic><topic>LKB1 protein</topic><topic>Male</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Mice, Transgenic</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Nutrients</topic><topic>Phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteolysis</topic><topic>Rapamycin</topic><topic>Ribosomal protein S6 kinase</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - genetics</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</topic><topic>Ribosomal Protein S6 Kinases, 90-kDa - genetics</topic><topic>Ribosomal Protein S6 Kinases, 90-kDa - metabolism</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Stability</topic><topic>Stem Cells</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tumor Burden</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiaoduo</creatorcontrib><creatorcontrib>Hu, Hongli</creatorcontrib><creatorcontrib>Tong, Xinyuan</creatorcontrib><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Liu, Xiangyuan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Yuan, Huairui</creatorcontrib><creatorcontrib>Xie, Xia</creatorcontrib><creatorcontrib>Li, Qingrun</creatorcontrib><creatorcontrib>Zhang, Yuxue</creatorcontrib><creatorcontrib>Ouyang, Huafang</creatorcontrib><creatorcontrib>Wei, Mengqi</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Liu, Pengda</creatorcontrib><creatorcontrib>Gan, Wenjian</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Xie, Anyong</creatorcontrib><creatorcontrib>Kuai, Xiaoling</creatorcontrib><creatorcontrib>Chirn, Gung-Wei</creatorcontrib><creatorcontrib>Zhou, Hu</creatorcontrib><creatorcontrib>Zeng, Rong</creatorcontrib><creatorcontrib>Hu, Ronggui</creatorcontrib><creatorcontrib>Qin, Jun</creatorcontrib><creatorcontrib>Meng, Fei-Long</creatorcontrib><creatorcontrib>Wei, Wenyi</creatorcontrib><creatorcontrib>Ji, Hongbin</creatorcontrib><creatorcontrib>Gao, Daming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xiaoduo</au><au>Hu, Hongli</au><au>Tong, Xinyuan</au><au>Li, Long</au><au>Liu, Xiangyuan</au><au>Chen, Min</au><au>Yuan, Huairui</au><au>Xie, Xia</au><au>Li, Qingrun</au><au>Zhang, Yuxue</au><au>Ouyang, Huafang</au><au>Wei, Mengqi</au><au>Huang, Jing</au><au>Liu, Pengda</au><au>Gan, Wenjian</au><au>Liu, Yong</au><au>Xie, Anyong</au><au>Kuai, Xiaoling</au><au>Chirn, Gung-Wei</au><au>Zhou, Hu</au><au>Zeng, Rong</au><au>Hu, Ronggui</au><au>Qin, Jun</au><au>Meng, Fei-Long</au><au>Wei, Wenyi</au><au>Ji, Hongbin</au><au>Gao, Daming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>20</volume><issue>3</issue><spage>320</spage><epage>331</epage><pages>320-331</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 (
LKB1
; also known as
STK11
) hyperactivates mTOR complex 1 (mTORC1)–S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by
Lkb1
loss. These results reveal an important function of mTORC1–S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control.
Xie and colleagues find that activated mTORC1 growth signalling impairs DNA repair through S6K-mediated phosphorylation and inhibition of the RNF168 ligase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29403037</pmid><doi>10.1038/s41556-017-0033-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0891-6390</orcidid><orcidid>https://orcid.org/0000-0003-0512-3811</orcidid><orcidid>https://orcid.org/0000-0003-4374-1055</orcidid><orcidid>https://orcid.org/0000-0002-1644-0508</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2018-03, Vol.20 (3), p.320-331 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826806 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 13/1 13/106 13/109 13/31 13/44 13/51 13/89 13/95 14/19 14/63 38/77 631/337/1427 631/80/474/2073 631/80/641/83/2359 82/80 82/83 A549 Cells Amino acids Animals Biomedical and Life Sciences Cancer Research Cell Biology Cell Proliferation Control stability Damage accumulation Defects Deoxyribonucleic acid Developmental Biology DNA DNA Breaks, Double-Stranded DNA damage DNA Repair Female Gene expression Genomes Genomic instability Genomics Growth factors HCT116 Cells HEK293 Cells Humans Ionizing radiation Life Sciences Ligases Liver LKB1 protein Male Mechanistic Target of Rapamycin Complex 1 - genetics Mechanistic Target of Rapamycin Complex 1 - metabolism Mice Mice, Inbred BALB C Mice, Nude Mice, Transgenic Neoplasms - enzymology Neoplasms - genetics Neoplasms - pathology Nutrients Phosphorylation Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proteolysis Rapamycin Ribosomal protein S6 kinase Ribosomal Protein S6 Kinases, 70-kDa - genetics Ribosomal Protein S6 Kinases, 70-kDa - metabolism Ribosomal Protein S6 Kinases, 90-kDa - genetics Ribosomal Protein S6 Kinases, 90-kDa - metabolism Signal Transduction Signaling Stability Stem Cells TOR protein TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Tumor Burden Tumorigenesis Tumors Ubiquitin-protein ligase Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism |
title | The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mTOR%E2%80%93S6K%20pathway%20links%20growth%20signalling%20to%20DNA%20damage%20response%20by%20targeting%20RNF168&rft.jtitle=Nature%20cell%20biology&rft.au=Xie,%20Xiaoduo&rft.date=2018-03-01&rft.volume=20&rft.issue=3&rft.spage=320&rft.epage=331&rft.pages=320-331&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-017-0033-8&rft_dat=%3Cgale_pubme%3EA572603202%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007687647&rft_id=info:pmid/29403037&rft_galeid=A572603202&rfr_iscdi=true |