Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge
Histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. How brown fat keeps us from the cold Brown adipose tissue (BAT), or brown fat, protects against hypothermia by generating heat. Mitchell Lazar and colleagues discovered a critical and...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2017-06, Vol.546 (7659), p.544-548 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 7659 |
container_start_page | 544 |
container_title | Nature (London) |
container_volume | 546 |
creator | Emmett, Matthew J. Lim, Hee-Woong Jager, Jennifer Richter, Hannah J. Adlanmerini, Marine Peed, Lindsey C. Briggs, Erika R. Steger, David J. Ma, Tao Sims, Carrie A. Baur, Joseph A. Pei, Liming Won, Kyoung-Jae Seale, Patrick Gerhart-Hines, Zachary Lazar, Mitchell A. |
description | Histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude.
How brown fat keeps us from the cold
Brown adipose tissue (BAT), or brown fat, protects against hypothermia by generating heat. Mitchell Lazar and colleagues discovered a critical and novel role of the epigenetic modulator HDAC3 in controlling the ability of BAT to respond to acute thermogenic challenges. They report that histone deacetylase 3 (HDAC3) acts in BAT as a transcriptional coactivator to ensure basal transcription of BAT-specific genes, independent of adrenergic stimulation. HDAC3 primes UCP1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in BAT that can be rapidly engaged for thermogenic respiration and heat production on demand. This improves our understanding of the physiological basis for mammalian response to extreme cold exposure.
Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease
1
. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. Mice with brown adipose tissue-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. Uncoupling protein 1 (UCP1) is nearly absent in brown adipose tissue lacking HDAC3, and there is also marked downregulation of mitochondrial oxidative phosphorylation genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor
2
, it functions as a coactivator of oestrogen-related receptor α (ERRα) in brown adipose tissue. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of
Ucp1
,
Ppargc1a
(encoding PGC-1α), and oxidative phosphorylation genes. Importantly, HDAC3 promotes the basal transcription of these genes independently of adrenergic stimulation. Thus, HDAC3 uniquely primes
Ucp1
and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in brown adipose tissue that can be rapidly engaged upon exposure to dangerously cold temperature. |
doi_str_mv | 10.1038/nature22819 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A496332629</galeid><sourcerecordid>A496332629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c822t-98e7b5cd39abb52ac39441bf35d2de006a079ac23327f0edf17f26b9ec395ca13</originalsourceid><addsrcrecordid>eNqNk91r1TAYh4M43PHolfdS3I2inflo0_ZGOBzUDYaCm3gZ0vRtT0ZP0yWpuv_eHM42WujcyEUh75Mnydv8EHpF8DHBLP_YST9YoDQnxRO0IEnG44Tn2VO0wJjmMc4ZP0TPnbvEGKckS56hQ5pzktCCLdD5iXbedBBVIBX461Y6iFjUW-ilBReV1vzpIlnp3oSC184NENXGRlINPkxswG5NA51WkdrItoWugRfooJatg5c33yX6-eXzxfokPvv-9XS9OotVTqmPixyyMlUVK2RZplQqViQJKWuWVrQCjLnEWSEVZYxmNYaqJllNeVlAAFMlCVuiT3tvP5RbqBR03spW9FZvpb0WRmoxrXR6IxrzW6Q55TylQfD2RmDN1QDOi612CtpWdmAGJ0gRGsw4y3d7He3RRrYgdFebYFQ7XKw4xzTDYfyXSgoebsJD15conqFCEyEcMvyLWofpifUx_Nj_ZoZXvb4SY-m90Nh0PAOFUcFWq9mjPmrBeId3kwWB8fDXN3JwTpye_5jKH2LH3vf3s6uLX-tvU_PD9IxbWeOchfruyREsdpEUo0gG-vX4ld6xtxkMwIc94EIpxMeKSzPYLiRn1vcPWpo56g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910336381</pqid></control><display><type>article</type><title>Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Emmett, Matthew J. ; Lim, Hee-Woong ; Jager, Jennifer ; Richter, Hannah J. ; Adlanmerini, Marine ; Peed, Lindsey C. ; Briggs, Erika R. ; Steger, David J. ; Ma, Tao ; Sims, Carrie A. ; Baur, Joseph A. ; Pei, Liming ; Won, Kyoung-Jae ; Seale, Patrick ; Gerhart-Hines, Zachary ; Lazar, Mitchell A.</creator><creatorcontrib>Emmett, Matthew J. ; Lim, Hee-Woong ; Jager, Jennifer ; Richter, Hannah J. ; Adlanmerini, Marine ; Peed, Lindsey C. ; Briggs, Erika R. ; Steger, David J. ; Ma, Tao ; Sims, Carrie A. ; Baur, Joseph A. ; Pei, Liming ; Won, Kyoung-Jae ; Seale, Patrick ; Gerhart-Hines, Zachary ; Lazar, Mitchell A.</creatorcontrib><description>Histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude.
How brown fat keeps us from the cold
Brown adipose tissue (BAT), or brown fat, protects against hypothermia by generating heat. Mitchell Lazar and colleagues discovered a critical and novel role of the epigenetic modulator HDAC3 in controlling the ability of BAT to respond to acute thermogenic challenges. They report that histone deacetylase 3 (HDAC3) acts in BAT as a transcriptional coactivator to ensure basal transcription of BAT-specific genes, independent of adrenergic stimulation. HDAC3 primes UCP1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in BAT that can be rapidly engaged for thermogenic respiration and heat production on demand. This improves our understanding of the physiological basis for mammalian response to extreme cold exposure.
Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease
1
. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. Mice with brown adipose tissue-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. Uncoupling protein 1 (UCP1) is nearly absent in brown adipose tissue lacking HDAC3, and there is also marked downregulation of mitochondrial oxidative phosphorylation genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor
2
, it functions as a coactivator of oestrogen-related receptor α (ERRα) in brown adipose tissue. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of
Ucp1
,
Ppargc1a
(encoding PGC-1α), and oxidative phosphorylation genes. Importantly, HDAC3 promotes the basal transcription of these genes independently of adrenergic stimulation. Thus, HDAC3 uniquely primes
Ucp1
and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in brown adipose tissue that can be rapidly engaged upon exposure to dangerously cold temperature.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature22819</identifier><identifier>PMID: 28614293</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/109 ; 38/91 ; 45/15 ; 45/91 ; 631/337/572/2102 ; 631/443/319/1557 ; 64/60 ; 82/80 ; Adipose tissue ; Adipose Tissue, Brown - metabolism ; Animals ; Brown adipose tissue ; Cell Respiration ; Cold Temperature ; Enhancer Elements, Genetic - genetics ; Enzymes ; ERRalpha Estrogen-Related Receptor ; Gene Expression Regulation ; Histone Deacetylases - metabolism ; Histones ; Hot Temperature ; Humanities and Social Sciences ; Humans ; letter ; Male ; Mice ; Mitochondria - metabolism ; multidisciplinary ; Oxidative Phosphorylation ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Physiological aspects ; Physiological research ; Receptors, Estrogen - metabolism ; Science ; Thermogenesis ; Thermogenesis - genetics ; Uncoupling Protein 1 - genetics ; Uncoupling Protein 1 - metabolism</subject><ispartof>Nature (London), 2017-06, Vol.546 (7659), p.544-548</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c822t-98e7b5cd39abb52ac39441bf35d2de006a079ac23327f0edf17f26b9ec395ca13</citedby><cites>FETCH-LOGICAL-c822t-98e7b5cd39abb52ac39441bf35d2de006a079ac23327f0edf17f26b9ec395ca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature22819$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature22819$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28614293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Emmett, Matthew J.</creatorcontrib><creatorcontrib>Lim, Hee-Woong</creatorcontrib><creatorcontrib>Jager, Jennifer</creatorcontrib><creatorcontrib>Richter, Hannah J.</creatorcontrib><creatorcontrib>Adlanmerini, Marine</creatorcontrib><creatorcontrib>Peed, Lindsey C.</creatorcontrib><creatorcontrib>Briggs, Erika R.</creatorcontrib><creatorcontrib>Steger, David J.</creatorcontrib><creatorcontrib>Ma, Tao</creatorcontrib><creatorcontrib>Sims, Carrie A.</creatorcontrib><creatorcontrib>Baur, Joseph A.</creatorcontrib><creatorcontrib>Pei, Liming</creatorcontrib><creatorcontrib>Won, Kyoung-Jae</creatorcontrib><creatorcontrib>Seale, Patrick</creatorcontrib><creatorcontrib>Gerhart-Hines, Zachary</creatorcontrib><creatorcontrib>Lazar, Mitchell A.</creatorcontrib><title>Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude.
How brown fat keeps us from the cold
Brown adipose tissue (BAT), or brown fat, protects against hypothermia by generating heat. Mitchell Lazar and colleagues discovered a critical and novel role of the epigenetic modulator HDAC3 in controlling the ability of BAT to respond to acute thermogenic challenges. They report that histone deacetylase 3 (HDAC3) acts in BAT as a transcriptional coactivator to ensure basal transcription of BAT-specific genes, independent of adrenergic stimulation. HDAC3 primes UCP1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in BAT that can be rapidly engaged for thermogenic respiration and heat production on demand. This improves our understanding of the physiological basis for mammalian response to extreme cold exposure.
Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease
1
. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. Mice with brown adipose tissue-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. Uncoupling protein 1 (UCP1) is nearly absent in brown adipose tissue lacking HDAC3, and there is also marked downregulation of mitochondrial oxidative phosphorylation genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor
2
, it functions as a coactivator of oestrogen-related receptor α (ERRα) in brown adipose tissue. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of
Ucp1
,
Ppargc1a
(encoding PGC-1α), and oxidative phosphorylation genes. Importantly, HDAC3 promotes the basal transcription of these genes independently of adrenergic stimulation. Thus, HDAC3 uniquely primes
Ucp1
and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in brown adipose tissue that can be rapidly engaged upon exposure to dangerously cold temperature.</description><subject>38/109</subject><subject>38/91</subject><subject>45/15</subject><subject>45/91</subject><subject>631/337/572/2102</subject><subject>631/443/319/1557</subject><subject>64/60</subject><subject>82/80</subject><subject>Adipose tissue</subject><subject>Adipose Tissue, Brown - metabolism</subject><subject>Animals</subject><subject>Brown adipose tissue</subject><subject>Cell Respiration</subject><subject>Cold Temperature</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Enzymes</subject><subject>ERRalpha Estrogen-Related Receptor</subject><subject>Gene Expression Regulation</subject><subject>Histone Deacetylases - metabolism</subject><subject>Histones</subject><subject>Hot Temperature</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>letter</subject><subject>Male</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>multidisciplinary</subject><subject>Oxidative Phosphorylation</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Physiological aspects</subject><subject>Physiological research</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Science</subject><subject>Thermogenesis</subject><subject>Thermogenesis - genetics</subject><subject>Uncoupling Protein 1 - genetics</subject><subject>Uncoupling Protein 1 - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNk91r1TAYh4M43PHolfdS3I2inflo0_ZGOBzUDYaCm3gZ0vRtT0ZP0yWpuv_eHM42WujcyEUh75Mnydv8EHpF8DHBLP_YST9YoDQnxRO0IEnG44Tn2VO0wJjmMc4ZP0TPnbvEGKckS56hQ5pzktCCLdD5iXbedBBVIBX461Y6iFjUW-ilBReV1vzpIlnp3oSC184NENXGRlINPkxswG5NA51WkdrItoWugRfooJatg5c33yX6-eXzxfokPvv-9XS9OotVTqmPixyyMlUVK2RZplQqViQJKWuWVrQCjLnEWSEVZYxmNYaqJllNeVlAAFMlCVuiT3tvP5RbqBR03spW9FZvpb0WRmoxrXR6IxrzW6Q55TylQfD2RmDN1QDOi612CtpWdmAGJ0gRGsw4y3d7He3RRrYgdFebYFQ7XKw4xzTDYfyXSgoebsJD15conqFCEyEcMvyLWofpifUx_Nj_ZoZXvb4SY-m90Nh0PAOFUcFWq9mjPmrBeId3kwWB8fDXN3JwTpye_5jKH2LH3vf3s6uLX-tvU_PD9IxbWeOchfruyREsdpEUo0gG-vX4ld6xtxkMwIc94EIpxMeKSzPYLiRn1vcPWpo56g</recordid><startdate>20170622</startdate><enddate>20170622</enddate><creator>Emmett, Matthew J.</creator><creator>Lim, Hee-Woong</creator><creator>Jager, Jennifer</creator><creator>Richter, Hannah J.</creator><creator>Adlanmerini, Marine</creator><creator>Peed, Lindsey C.</creator><creator>Briggs, Erika R.</creator><creator>Steger, David J.</creator><creator>Ma, Tao</creator><creator>Sims, Carrie A.</creator><creator>Baur, Joseph A.</creator><creator>Pei, Liming</creator><creator>Won, Kyoung-Jae</creator><creator>Seale, Patrick</creator><creator>Gerhart-Hines, Zachary</creator><creator>Lazar, Mitchell A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170622</creationdate><title>Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge</title><author>Emmett, Matthew J. ; Lim, Hee-Woong ; Jager, Jennifer ; Richter, Hannah J. ; Adlanmerini, Marine ; Peed, Lindsey C. ; Briggs, Erika R. ; Steger, David J. ; Ma, Tao ; Sims, Carrie A. ; Baur, Joseph A. ; Pei, Liming ; Won, Kyoung-Jae ; Seale, Patrick ; Gerhart-Hines, Zachary ; Lazar, Mitchell A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c822t-98e7b5cd39abb52ac39441bf35d2de006a079ac23327f0edf17f26b9ec395ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38/109</topic><topic>38/91</topic><topic>45/15</topic><topic>45/91</topic><topic>631/337/572/2102</topic><topic>631/443/319/1557</topic><topic>64/60</topic><topic>82/80</topic><topic>Adipose tissue</topic><topic>Adipose Tissue, Brown - metabolism</topic><topic>Animals</topic><topic>Brown adipose tissue</topic><topic>Cell Respiration</topic><topic>Cold Temperature</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Enzymes</topic><topic>ERRalpha Estrogen-Related Receptor</topic><topic>Gene Expression Regulation</topic><topic>Histone Deacetylases - metabolism</topic><topic>Histones</topic><topic>Hot Temperature</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>letter</topic><topic>Male</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>multidisciplinary</topic><topic>Oxidative Phosphorylation</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Physiological aspects</topic><topic>Physiological research</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Science</topic><topic>Thermogenesis</topic><topic>Thermogenesis - genetics</topic><topic>Uncoupling Protein 1 - genetics</topic><topic>Uncoupling Protein 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emmett, Matthew J.</creatorcontrib><creatorcontrib>Lim, Hee-Woong</creatorcontrib><creatorcontrib>Jager, Jennifer</creatorcontrib><creatorcontrib>Richter, Hannah J.</creatorcontrib><creatorcontrib>Adlanmerini, Marine</creatorcontrib><creatorcontrib>Peed, Lindsey C.</creatorcontrib><creatorcontrib>Briggs, Erika R.</creatorcontrib><creatorcontrib>Steger, David J.</creatorcontrib><creatorcontrib>Ma, Tao</creatorcontrib><creatorcontrib>Sims, Carrie A.</creatorcontrib><creatorcontrib>Baur, Joseph A.</creatorcontrib><creatorcontrib>Pei, Liming</creatorcontrib><creatorcontrib>Won, Kyoung-Jae</creatorcontrib><creatorcontrib>Seale, Patrick</creatorcontrib><creatorcontrib>Gerhart-Hines, Zachary</creatorcontrib><creatorcontrib>Lazar, Mitchell A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emmett, Matthew J.</au><au>Lim, Hee-Woong</au><au>Jager, Jennifer</au><au>Richter, Hannah J.</au><au>Adlanmerini, Marine</au><au>Peed, Lindsey C.</au><au>Briggs, Erika R.</au><au>Steger, David J.</au><au>Ma, Tao</au><au>Sims, Carrie A.</au><au>Baur, Joseph A.</au><au>Pei, Liming</au><au>Won, Kyoung-Jae</au><au>Seale, Patrick</au><au>Gerhart-Hines, Zachary</au><au>Lazar, Mitchell A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-06-22</date><risdate>2017</risdate><volume>546</volume><issue>7659</issue><spage>544</spage><epage>548</epage><pages>544-548</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude.
How brown fat keeps us from the cold
Brown adipose tissue (BAT), or brown fat, protects against hypothermia by generating heat. Mitchell Lazar and colleagues discovered a critical and novel role of the epigenetic modulator HDAC3 in controlling the ability of BAT to respond to acute thermogenic challenges. They report that histone deacetylase 3 (HDAC3) acts in BAT as a transcriptional coactivator to ensure basal transcription of BAT-specific genes, independent of adrenergic stimulation. HDAC3 primes UCP1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in BAT that can be rapidly engaged for thermogenic respiration and heat production on demand. This improves our understanding of the physiological basis for mammalian response to extreme cold exposure.
Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease
1
. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. Mice with brown adipose tissue-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. Uncoupling protein 1 (UCP1) is nearly absent in brown adipose tissue lacking HDAC3, and there is also marked downregulation of mitochondrial oxidative phosphorylation genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor
2
, it functions as a coactivator of oestrogen-related receptor α (ERRα) in brown adipose tissue. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of
Ucp1
,
Ppargc1a
(encoding PGC-1α), and oxidative phosphorylation genes. Importantly, HDAC3 promotes the basal transcription of these genes independently of adrenergic stimulation. Thus, HDAC3 uniquely primes
Ucp1
and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in brown adipose tissue that can be rapidly engaged upon exposure to dangerously cold temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28614293</pmid><doi>10.1038/nature22819</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2017-06, Vol.546 (7659), p.544-548 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826652 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 38/109 38/91 45/15 45/91 631/337/572/2102 631/443/319/1557 64/60 82/80 Adipose tissue Adipose Tissue, Brown - metabolism Animals Brown adipose tissue Cell Respiration Cold Temperature Enhancer Elements, Genetic - genetics Enzymes ERRalpha Estrogen-Related Receptor Gene Expression Regulation Histone Deacetylases - metabolism Histones Hot Temperature Humanities and Social Sciences Humans letter Male Mice Mitochondria - metabolism multidisciplinary Oxidative Phosphorylation Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism Physiological aspects Physiological research Receptors, Estrogen - metabolism Science Thermogenesis Thermogenesis - genetics Uncoupling Protein 1 - genetics Uncoupling Protein 1 - metabolism |
title | Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20deacetylase%203%20prepares%20brown%20adipose%20tissue%20for%20acute%20thermogenic%20challenge&rft.jtitle=Nature%20(London)&rft.au=Emmett,%20Matthew%20J.&rft.date=2017-06-22&rft.volume=546&rft.issue=7659&rft.spage=544&rft.epage=548&rft.pages=544-548&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature22819&rft_dat=%3Cgale_pubme%3EA496332629%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910336381&rft_id=info:pmid/28614293&rft_galeid=A496332629&rfr_iscdi=true |