Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations

•A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2018-02, Vol.296, p.69-83
Hauptverfasser: Wu, Jiaxing, Skilling, Quinton M., Maruyama, Daniel, Li, Chenguang, Ognjanovski, Nicolette, Aton, Sara, Zochowski, Michal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue
container_start_page 69
container_title Journal of neuroscience methods
container_volume 296
creator Wu, Jiaxing
Skilling, Quinton M.
Maruyama, Daniel
Li, Chenguang
Ognjanovski, Nicolette
Aton, Sara
Zochowski, Michal
description •A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavioral states. Recent advances in neurophysiological recording techniques have increased both the spatial and temporal resolution of data. New methodologies are required that can handle large data sets in an efficient manner as well as to make quantifiable, and realistic, predictions about the global modality of the brain from under-sampled recordings. To rectify both problems, we first propose an analytical modification to an existing functional connectivity algorithm, Average Minimal Distance (AMD), to rapidly capture functional network connectivity. We then complement this algorithm by introducing Functional Network Stability (FuNS), a metric that can be used to quickly assess the global network dynamic changes over time, without being constrained by the activities of a specific set of neurons. We systematically test the performance of AMD and FuNS (1) on artificial spiking data with different statistical characteristics, (2) from spiking data generated using a neural network model, and (3) using in vivo data recorded from mouse hippocampus during fear learning. Our results show that AMD and FuNS are able to monitor the change in network dynamics during memory consolidation. AMD outperforms traditional bootstrapping and cross-correlation (CC) methods in both significance and computation time. Simultaneously, FuNS provides a reliable way to establish a link between local structural network changes, global dynamics of network-wide representations activity, and behavior. The AMD-FuNS framework should be universally useful in linking long time-scale, global network dynamics and cognitive behavior.
doi_str_mv 10.1016/j.jneumeth.2017.12.021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027017304399</els_id><sourcerecordid>1984264084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-5c185866091b8928676a09953cac4b0516182d0b19c1965c4415ca075a60157e3</originalsourceid><addsrcrecordid>eNqFkbFuFDEURS0EIkvgFyKXNDPYXttjN4goIoAUiQYkOsvjeZN4mbEX27NoO2pa_pAvwcsmEYiCysU99773fBE6o6SlhMoXm3YTYJmh3LSM0K6lrCWMPkArqjrWyE59eohWFRQNYR05QU9y3hBCuCbyMTphmmm-JnqFvl8uwRUfg51wgPI1ps84F9v7yZc9tmHAdgfJXgOeffBzpQZf9eAA__z2A5_jMdkZfttKxMlu_TBVX86QMx72wc7eZRxHPP47J8E2QYZQ7EHIT9Gj0U4Znt2-p-jj5esPF2-bq_dv3l2cXzWOd7Q0wlEllJRE015ppmQnLdFarJ11vCeCSqrYQHqqHdVSOM6pcJZ0wkpCRQfrU_TymLtd-hkGVxdIdjLbVM9LexOtN38rwd-Y67gzQjEpOasBz28DUvyyQC5m9tnBNNkAccmGasWZ5ETxisoj6lLMOcF4P4YScyjSbMxdkeZQpKHM1CKr8ezPJe9td81V4NURgPpVOw_JZOeh9jL4BK6YIfr_zfgFURO3dA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984264084</pqid></control><display><type>article</type><title>Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wu, Jiaxing ; Skilling, Quinton M. ; Maruyama, Daniel ; Li, Chenguang ; Ognjanovski, Nicolette ; Aton, Sara ; Zochowski, Michal</creator><creatorcontrib>Wu, Jiaxing ; Skilling, Quinton M. ; Maruyama, Daniel ; Li, Chenguang ; Ognjanovski, Nicolette ; Aton, Sara ; Zochowski, Michal</creatorcontrib><description>•A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavioral states. Recent advances in neurophysiological recording techniques have increased both the spatial and temporal resolution of data. New methodologies are required that can handle large data sets in an efficient manner as well as to make quantifiable, and realistic, predictions about the global modality of the brain from under-sampled recordings. To rectify both problems, we first propose an analytical modification to an existing functional connectivity algorithm, Average Minimal Distance (AMD), to rapidly capture functional network connectivity. We then complement this algorithm by introducing Functional Network Stability (FuNS), a metric that can be used to quickly assess the global network dynamic changes over time, without being constrained by the activities of a specific set of neurons. We systematically test the performance of AMD and FuNS (1) on artificial spiking data with different statistical characteristics, (2) from spiking data generated using a neural network model, and (3) using in vivo data recorded from mouse hippocampus during fear learning. Our results show that AMD and FuNS are able to monitor the change in network dynamics during memory consolidation. AMD outperforms traditional bootstrapping and cross-correlation (CC) methods in both significance and computation time. Simultaneously, FuNS provides a reliable way to establish a link between local structural network changes, global dynamics of network-wide representations activity, and behavior. The AMD-FuNS framework should be universally useful in linking long time-scale, global network dynamics and cognitive behavior.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2017.12.021</identifier><identifier>PMID: 29294309</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Action Potentials ; Algorithms ; Animals ; Brain - physiology ; Computer Simulation ; Electrodes, Implanted ; Excitatory/inhibitory balance ; Fear - physiology ; Functional connectivity ; Functional stability ; Learning ; Learning - physiology ; Mice, Inbred C57BL ; Models, Neurological ; Network dynamics ; Neural Networks (Computer) ; Neural Pathways - physiology ; Neurons - physiology ; Signal Processing, Computer-Assisted ; Synapses - physiology</subject><ispartof>Journal of neuroscience methods, 2018-02, Vol.296, p.69-83</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-5c185866091b8928676a09953cac4b0516182d0b19c1965c4415ca075a60157e3</citedby><cites>FETCH-LOGICAL-c471t-5c185866091b8928676a09953cac4b0516182d0b19c1965c4415ca075a60157e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jneumeth.2017.12.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29294309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jiaxing</creatorcontrib><creatorcontrib>Skilling, Quinton M.</creatorcontrib><creatorcontrib>Maruyama, Daniel</creatorcontrib><creatorcontrib>Li, Chenguang</creatorcontrib><creatorcontrib>Ognjanovski, Nicolette</creatorcontrib><creatorcontrib>Aton, Sara</creatorcontrib><creatorcontrib>Zochowski, Michal</creatorcontrib><title>Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>•A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavioral states. Recent advances in neurophysiological recording techniques have increased both the spatial and temporal resolution of data. New methodologies are required that can handle large data sets in an efficient manner as well as to make quantifiable, and realistic, predictions about the global modality of the brain from under-sampled recordings. To rectify both problems, we first propose an analytical modification to an existing functional connectivity algorithm, Average Minimal Distance (AMD), to rapidly capture functional network connectivity. We then complement this algorithm by introducing Functional Network Stability (FuNS), a metric that can be used to quickly assess the global network dynamic changes over time, without being constrained by the activities of a specific set of neurons. We systematically test the performance of AMD and FuNS (1) on artificial spiking data with different statistical characteristics, (2) from spiking data generated using a neural network model, and (3) using in vivo data recorded from mouse hippocampus during fear learning. Our results show that AMD and FuNS are able to monitor the change in network dynamics during memory consolidation. AMD outperforms traditional bootstrapping and cross-correlation (CC) methods in both significance and computation time. Simultaneously, FuNS provides a reliable way to establish a link between local structural network changes, global dynamics of network-wide representations activity, and behavior. The AMD-FuNS framework should be universally useful in linking long time-scale, global network dynamics and cognitive behavior.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Brain - physiology</subject><subject>Computer Simulation</subject><subject>Electrodes, Implanted</subject><subject>Excitatory/inhibitory balance</subject><subject>Fear - physiology</subject><subject>Functional connectivity</subject><subject>Functional stability</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Neurological</subject><subject>Network dynamics</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - physiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Synapses - physiology</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbFuFDEURS0EIkvgFyKXNDPYXttjN4goIoAUiQYkOsvjeZN4mbEX27NoO2pa_pAvwcsmEYiCysU99773fBE6o6SlhMoXm3YTYJmh3LSM0K6lrCWMPkArqjrWyE59eohWFRQNYR05QU9y3hBCuCbyMTphmmm-JnqFvl8uwRUfg51wgPI1ps84F9v7yZc9tmHAdgfJXgOeffBzpQZf9eAA__z2A5_jMdkZfttKxMlu_TBVX86QMx72wc7eZRxHPP47J8E2QYZQ7EHIT9Gj0U4Znt2-p-jj5esPF2-bq_dv3l2cXzWOd7Q0wlEllJRE015ppmQnLdFarJ11vCeCSqrYQHqqHdVSOM6pcJZ0wkpCRQfrU_TymLtd-hkGVxdIdjLbVM9LexOtN38rwd-Y67gzQjEpOasBz28DUvyyQC5m9tnBNNkAccmGasWZ5ETxisoj6lLMOcF4P4YScyjSbMxdkeZQpKHM1CKr8ezPJe9td81V4NURgPpVOw_JZOeh9jL4BK6YIfr_zfgFURO3dA</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Wu, Jiaxing</creator><creator>Skilling, Quinton M.</creator><creator>Maruyama, Daniel</creator><creator>Li, Chenguang</creator><creator>Ognjanovski, Nicolette</creator><creator>Aton, Sara</creator><creator>Zochowski, Michal</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180215</creationdate><title>Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations</title><author>Wu, Jiaxing ; Skilling, Quinton M. ; Maruyama, Daniel ; Li, Chenguang ; Ognjanovski, Nicolette ; Aton, Sara ; Zochowski, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-5c185866091b8928676a09953cac4b0516182d0b19c1965c4415ca075a60157e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Brain - physiology</topic><topic>Computer Simulation</topic><topic>Electrodes, Implanted</topic><topic>Excitatory/inhibitory balance</topic><topic>Fear - physiology</topic><topic>Functional connectivity</topic><topic>Functional stability</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Neurological</topic><topic>Network dynamics</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - physiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jiaxing</creatorcontrib><creatorcontrib>Skilling, Quinton M.</creatorcontrib><creatorcontrib>Maruyama, Daniel</creatorcontrib><creatorcontrib>Li, Chenguang</creatorcontrib><creatorcontrib>Ognjanovski, Nicolette</creatorcontrib><creatorcontrib>Aton, Sara</creatorcontrib><creatorcontrib>Zochowski, Michal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jiaxing</au><au>Skilling, Quinton M.</au><au>Maruyama, Daniel</au><au>Li, Chenguang</au><au>Ognjanovski, Nicolette</au><au>Aton, Sara</au><au>Zochowski, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2018-02-15</date><risdate>2018</risdate><volume>296</volume><spage>69</spage><epage>83</epage><pages>69-83</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>•A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavioral states. Recent advances in neurophysiological recording techniques have increased both the spatial and temporal resolution of data. New methodologies are required that can handle large data sets in an efficient manner as well as to make quantifiable, and realistic, predictions about the global modality of the brain from under-sampled recordings. To rectify both problems, we first propose an analytical modification to an existing functional connectivity algorithm, Average Minimal Distance (AMD), to rapidly capture functional network connectivity. We then complement this algorithm by introducing Functional Network Stability (FuNS), a metric that can be used to quickly assess the global network dynamic changes over time, without being constrained by the activities of a specific set of neurons. We systematically test the performance of AMD and FuNS (1) on artificial spiking data with different statistical characteristics, (2) from spiking data generated using a neural network model, and (3) using in vivo data recorded from mouse hippocampus during fear learning. Our results show that AMD and FuNS are able to monitor the change in network dynamics during memory consolidation. AMD outperforms traditional bootstrapping and cross-correlation (CC) methods in both significance and computation time. Simultaneously, FuNS provides a reliable way to establish a link between local structural network changes, global dynamics of network-wide representations activity, and behavior. The AMD-FuNS framework should be universally useful in linking long time-scale, global network dynamics and cognitive behavior.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29294309</pmid><doi>10.1016/j.jneumeth.2017.12.021</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2018-02, Vol.296, p.69-83
issn 0165-0270
1872-678X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826642
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action Potentials
Algorithms
Animals
Brain - physiology
Computer Simulation
Electrodes, Implanted
Excitatory/inhibitory balance
Fear - physiology
Functional connectivity
Functional stability
Learning
Learning - physiology
Mice, Inbred C57BL
Models, Neurological
Network dynamics
Neural Networks (Computer)
Neural Pathways - physiology
Neurons - physiology
Signal Processing, Computer-Assisted
Synapses - physiology
title Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20network%20stability%20and%20average%20minimal%20distance%20%E2%80%93%20A%20framework%20to%20rapidly%20assess%20dynamics%20of%20functional%20network%20representations&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Wu,%20Jiaxing&rft.date=2018-02-15&rft.volume=296&rft.spage=69&rft.epage=83&rft.pages=69-83&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2017.12.021&rft_dat=%3Cproquest_pubme%3E1984264084%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984264084&rft_id=info:pmid/29294309&rft_els_id=S0165027017304399&rfr_iscdi=true