Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations
•A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavi...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience methods 2018-02, Vol.296, p.69-83 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | |
container_start_page | 69 |
container_title | Journal of neuroscience methods |
container_volume | 296 |
creator | Wu, Jiaxing Skilling, Quinton M. Maruyama, Daniel Li, Chenguang Ognjanovski, Nicolette Aton, Sara Zochowski, Michal |
description | •A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavioral states.
Recent advances in neurophysiological recording techniques have increased both the spatial and temporal resolution of data. New methodologies are required that can handle large data sets in an efficient manner as well as to make quantifiable, and realistic, predictions about the global modality of the brain from under-sampled recordings.
To rectify both problems, we first propose an analytical modification to an existing functional connectivity algorithm, Average Minimal Distance (AMD), to rapidly capture functional network connectivity. We then complement this algorithm by introducing Functional Network Stability (FuNS), a metric that can be used to quickly assess the global network dynamic changes over time, without being constrained by the activities of a specific set of neurons.
We systematically test the performance of AMD and FuNS (1) on artificial spiking data with different statistical characteristics, (2) from spiking data generated using a neural network model, and (3) using in vivo data recorded from mouse hippocampus during fear learning. Our results show that AMD and FuNS are able to monitor the change in network dynamics during memory consolidation.
AMD outperforms traditional bootstrapping and cross-correlation (CC) methods in both significance and computation time. Simultaneously, FuNS provides a reliable way to establish a link between local structural network changes, global dynamics of network-wide representations activity, and behavior.
The AMD-FuNS framework should be universally useful in linking long time-scale, global network dynamics and cognitive behavior. |
doi_str_mv | 10.1016/j.jneumeth.2017.12.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027017304399</els_id><sourcerecordid>1984264084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-5c185866091b8928676a09953cac4b0516182d0b19c1965c4415ca075a60157e3</originalsourceid><addsrcrecordid>eNqFkbFuFDEURS0EIkvgFyKXNDPYXttjN4goIoAUiQYkOsvjeZN4mbEX27NoO2pa_pAvwcsmEYiCysU99773fBE6o6SlhMoXm3YTYJmh3LSM0K6lrCWMPkArqjrWyE59eohWFRQNYR05QU9y3hBCuCbyMTphmmm-JnqFvl8uwRUfg51wgPI1ps84F9v7yZc9tmHAdgfJXgOeffBzpQZf9eAA__z2A5_jMdkZfttKxMlu_TBVX86QMx72wc7eZRxHPP47J8E2QYZQ7EHIT9Gj0U4Znt2-p-jj5esPF2-bq_dv3l2cXzWOd7Q0wlEllJRE015ppmQnLdFarJ11vCeCSqrYQHqqHdVSOM6pcJZ0wkpCRQfrU_TymLtd-hkGVxdIdjLbVM9LexOtN38rwd-Y67gzQjEpOasBz28DUvyyQC5m9tnBNNkAccmGasWZ5ETxisoj6lLMOcF4P4YScyjSbMxdkeZQpKHM1CKr8ezPJe9td81V4NURgPpVOw_JZOeh9jL4BK6YIfr_zfgFURO3dA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984264084</pqid></control><display><type>article</type><title>Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wu, Jiaxing ; Skilling, Quinton M. ; Maruyama, Daniel ; Li, Chenguang ; Ognjanovski, Nicolette ; Aton, Sara ; Zochowski, Michal</creator><creatorcontrib>Wu, Jiaxing ; Skilling, Quinton M. ; Maruyama, Daniel ; Li, Chenguang ; Ognjanovski, Nicolette ; Aton, Sara ; Zochowski, Michal</creatorcontrib><description>•A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavioral states.
Recent advances in neurophysiological recording techniques have increased both the spatial and temporal resolution of data. New methodologies are required that can handle large data sets in an efficient manner as well as to make quantifiable, and realistic, predictions about the global modality of the brain from under-sampled recordings.
To rectify both problems, we first propose an analytical modification to an existing functional connectivity algorithm, Average Minimal Distance (AMD), to rapidly capture functional network connectivity. We then complement this algorithm by introducing Functional Network Stability (FuNS), a metric that can be used to quickly assess the global network dynamic changes over time, without being constrained by the activities of a specific set of neurons.
We systematically test the performance of AMD and FuNS (1) on artificial spiking data with different statistical characteristics, (2) from spiking data generated using a neural network model, and (3) using in vivo data recorded from mouse hippocampus during fear learning. Our results show that AMD and FuNS are able to monitor the change in network dynamics during memory consolidation.
AMD outperforms traditional bootstrapping and cross-correlation (CC) methods in both significance and computation time. Simultaneously, FuNS provides a reliable way to establish a link between local structural network changes, global dynamics of network-wide representations activity, and behavior.
The AMD-FuNS framework should be universally useful in linking long time-scale, global network dynamics and cognitive behavior.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2017.12.021</identifier><identifier>PMID: 29294309</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Action Potentials ; Algorithms ; Animals ; Brain - physiology ; Computer Simulation ; Electrodes, Implanted ; Excitatory/inhibitory balance ; Fear - physiology ; Functional connectivity ; Functional stability ; Learning ; Learning - physiology ; Mice, Inbred C57BL ; Models, Neurological ; Network dynamics ; Neural Networks (Computer) ; Neural Pathways - physiology ; Neurons - physiology ; Signal Processing, Computer-Assisted ; Synapses - physiology</subject><ispartof>Journal of neuroscience methods, 2018-02, Vol.296, p.69-83</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-5c185866091b8928676a09953cac4b0516182d0b19c1965c4415ca075a60157e3</citedby><cites>FETCH-LOGICAL-c471t-5c185866091b8928676a09953cac4b0516182d0b19c1965c4415ca075a60157e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jneumeth.2017.12.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29294309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jiaxing</creatorcontrib><creatorcontrib>Skilling, Quinton M.</creatorcontrib><creatorcontrib>Maruyama, Daniel</creatorcontrib><creatorcontrib>Li, Chenguang</creatorcontrib><creatorcontrib>Ognjanovski, Nicolette</creatorcontrib><creatorcontrib>Aton, Sara</creatorcontrib><creatorcontrib>Zochowski, Michal</creatorcontrib><title>Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>•A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavioral states.
Recent advances in neurophysiological recording techniques have increased both the spatial and temporal resolution of data. New methodologies are required that can handle large data sets in an efficient manner as well as to make quantifiable, and realistic, predictions about the global modality of the brain from under-sampled recordings.
To rectify both problems, we first propose an analytical modification to an existing functional connectivity algorithm, Average Minimal Distance (AMD), to rapidly capture functional network connectivity. We then complement this algorithm by introducing Functional Network Stability (FuNS), a metric that can be used to quickly assess the global network dynamic changes over time, without being constrained by the activities of a specific set of neurons.
We systematically test the performance of AMD and FuNS (1) on artificial spiking data with different statistical characteristics, (2) from spiking data generated using a neural network model, and (3) using in vivo data recorded from mouse hippocampus during fear learning. Our results show that AMD and FuNS are able to monitor the change in network dynamics during memory consolidation.
AMD outperforms traditional bootstrapping and cross-correlation (CC) methods in both significance and computation time. Simultaneously, FuNS provides a reliable way to establish a link between local structural network changes, global dynamics of network-wide representations activity, and behavior.
The AMD-FuNS framework should be universally useful in linking long time-scale, global network dynamics and cognitive behavior.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Brain - physiology</subject><subject>Computer Simulation</subject><subject>Electrodes, Implanted</subject><subject>Excitatory/inhibitory balance</subject><subject>Fear - physiology</subject><subject>Functional connectivity</subject><subject>Functional stability</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Neurological</subject><subject>Network dynamics</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - physiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Synapses - physiology</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbFuFDEURS0EIkvgFyKXNDPYXttjN4goIoAUiQYkOsvjeZN4mbEX27NoO2pa_pAvwcsmEYiCysU99773fBE6o6SlhMoXm3YTYJmh3LSM0K6lrCWMPkArqjrWyE59eohWFRQNYR05QU9y3hBCuCbyMTphmmm-JnqFvl8uwRUfg51wgPI1ps84F9v7yZc9tmHAdgfJXgOeffBzpQZf9eAA__z2A5_jMdkZfttKxMlu_TBVX86QMx72wc7eZRxHPP47J8E2QYZQ7EHIT9Gj0U4Znt2-p-jj5esPF2-bq_dv3l2cXzWOd7Q0wlEllJRE015ppmQnLdFarJ11vCeCSqrYQHqqHdVSOM6pcJZ0wkpCRQfrU_TymLtd-hkGVxdIdjLbVM9LexOtN38rwd-Y67gzQjEpOasBz28DUvyyQC5m9tnBNNkAccmGasWZ5ETxisoj6lLMOcF4P4YScyjSbMxdkeZQpKHM1CKr8ezPJe9td81V4NURgPpVOw_JZOeh9jL4BK6YIfr_zfgFURO3dA</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Wu, Jiaxing</creator><creator>Skilling, Quinton M.</creator><creator>Maruyama, Daniel</creator><creator>Li, Chenguang</creator><creator>Ognjanovski, Nicolette</creator><creator>Aton, Sara</creator><creator>Zochowski, Michal</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180215</creationdate><title>Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations</title><author>Wu, Jiaxing ; Skilling, Quinton M. ; Maruyama, Daniel ; Li, Chenguang ; Ognjanovski, Nicolette ; Aton, Sara ; Zochowski, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-5c185866091b8928676a09953cac4b0516182d0b19c1965c4415ca075a60157e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Brain - physiology</topic><topic>Computer Simulation</topic><topic>Electrodes, Implanted</topic><topic>Excitatory/inhibitory balance</topic><topic>Fear - physiology</topic><topic>Functional connectivity</topic><topic>Functional stability</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Neurological</topic><topic>Network dynamics</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - physiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jiaxing</creatorcontrib><creatorcontrib>Skilling, Quinton M.</creatorcontrib><creatorcontrib>Maruyama, Daniel</creatorcontrib><creatorcontrib>Li, Chenguang</creatorcontrib><creatorcontrib>Ognjanovski, Nicolette</creatorcontrib><creatorcontrib>Aton, Sara</creatorcontrib><creatorcontrib>Zochowski, Michal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jiaxing</au><au>Skilling, Quinton M.</au><au>Maruyama, Daniel</au><au>Li, Chenguang</au><au>Ognjanovski, Nicolette</au><au>Aton, Sara</au><au>Zochowski, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2018-02-15</date><risdate>2018</risdate><volume>296</volume><spage>69</spage><epage>83</epage><pages>69-83</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>•A framework to rapidly detect dynamics of functional network states.•It captures functional connectivity patterns more effectively than other methods.•Functional similarity metric measures global network response to local changes.•It bridges the gap between time scales of neural activity and behavioral states.
Recent advances in neurophysiological recording techniques have increased both the spatial and temporal resolution of data. New methodologies are required that can handle large data sets in an efficient manner as well as to make quantifiable, and realistic, predictions about the global modality of the brain from under-sampled recordings.
To rectify both problems, we first propose an analytical modification to an existing functional connectivity algorithm, Average Minimal Distance (AMD), to rapidly capture functional network connectivity. We then complement this algorithm by introducing Functional Network Stability (FuNS), a metric that can be used to quickly assess the global network dynamic changes over time, without being constrained by the activities of a specific set of neurons.
We systematically test the performance of AMD and FuNS (1) on artificial spiking data with different statistical characteristics, (2) from spiking data generated using a neural network model, and (3) using in vivo data recorded from mouse hippocampus during fear learning. Our results show that AMD and FuNS are able to monitor the change in network dynamics during memory consolidation.
AMD outperforms traditional bootstrapping and cross-correlation (CC) methods in both significance and computation time. Simultaneously, FuNS provides a reliable way to establish a link between local structural network changes, global dynamics of network-wide representations activity, and behavior.
The AMD-FuNS framework should be universally useful in linking long time-scale, global network dynamics and cognitive behavior.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29294309</pmid><doi>10.1016/j.jneumeth.2017.12.021</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0270 |
ispartof | Journal of neuroscience methods, 2018-02, Vol.296, p.69-83 |
issn | 0165-0270 1872-678X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5826642 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action Potentials Algorithms Animals Brain - physiology Computer Simulation Electrodes, Implanted Excitatory/inhibitory balance Fear - physiology Functional connectivity Functional stability Learning Learning - physiology Mice, Inbred C57BL Models, Neurological Network dynamics Neural Networks (Computer) Neural Pathways - physiology Neurons - physiology Signal Processing, Computer-Assisted Synapses - physiology |
title | Functional network stability and average minimal distance – A framework to rapidly assess dynamics of functional network representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20network%20stability%20and%20average%20minimal%20distance%20%E2%80%93%20A%20framework%20to%20rapidly%20assess%20dynamics%20of%20functional%20network%20representations&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Wu,%20Jiaxing&rft.date=2018-02-15&rft.volume=296&rft.spage=69&rft.epage=83&rft.pages=69-83&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2017.12.021&rft_dat=%3Cproquest_pubme%3E1984264084%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984264084&rft_id=info:pmid/29294309&rft_els_id=S0165027017304399&rfr_iscdi=true |