Claudin-18: unexpected regulator of lung alveolar epithelial cell proliferation

Claudin 18 (CLDN18) is a tight junction protein that is highly expressed in the lung. While mice lacking CLDN18 exhibit the expected loss of epithelial integrity in the lung, these animals also have unexpectedly large lungs. In this issue of the JCI, Zhou, Flodby, and colleagues reveal that the incr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2018-03, Vol.128 (3), p.903-905
1. Verfasser: Kotton, Darrell N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 3
container_start_page 903
container_title The Journal of clinical investigation
container_volume 128
creator Kotton, Darrell N
description Claudin 18 (CLDN18) is a tight junction protein that is highly expressed in the lung. While mice lacking CLDN18 exhibit the expected loss of epithelial integrity in the lung, these animals also have unexpectedly large lungs. In this issue of the JCI, Zhou, Flodby, and colleagues reveal that the increased lung size of Cldn18-/- mice is the result of increased type 2 alveolar epithelial (AT2) cell proliferation. This increase in proliferation was shown to be driven by translocation of the transcriptional regulator Yes-associated protein (YAP) to the nucleus and subsequent induction of proliferative pathways. CLDN18-deficent mice also had increased frequency of lung adenocarcinomas. Together, the results of this study advance our understanding of the mechanisms that likely regulate homeostasis of the normal lung as well as promote the proliferative state of malignant cells found in lung adenocarcinomas thought to originate from AT2 cells.
doi_str_mv 10.1172/JCI99799
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5824920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530360210</galeid><sourcerecordid>A530360210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-7010d37e51982807b979faa706e4fe8d089b457e455a6526eb5e529dc3a276aa3</originalsourceid><addsrcrecordid>eNqNkltr3DAQhUVpaTZpob-gGAqlfXAqyZYl9aEQll62BBZ6exVae-xV0EqOJIfk31dLLo1hH8o8CEbfHIYzB6FXBJ8SwumH78uVlFzKJ2hBGBOloJV4ihYYU1JKXokjdBzjBcakrln9HB1RWWPcSLJA66XVU2dcScTHYnJwPUKboCsCDJPVyYfC94Wd3FBoewXe6lDAaNIWrNG2aMHaYgzemh6CTsa7F-hZr22El3fvCfr95fOv5bfyfP11tTw7L9umrlLJMcFdxYERKajAfJO377XmuIG6B9FhITc141AzphtGG9gwYFR2baUpb7SuTtCnW91x2uyga8GloK0ag9npcKO8Nmr-48xWDf5KMUFrSXEWeHMnEPzlBDGpCz8Fl3dWdO8Tx5KRf9SgLSjjep_F2p2JrTpjFa6a7PBeqzxADeCyKdY76E1uz_jTA3yuDnamPTjwfjaQmQTXadBTjGr188f_s-s_c_btI3YL2qZt9HbaXzLOwXe3YBt8jAH6B6cJVvsIqvsIZvT148s8gPeZq_4CUrDRVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014470951</pqid></control><display><type>article</type><title>Claudin-18: unexpected regulator of lung alveolar epithelial cell proliferation</title><source>MEDLINE</source><source>Journals@Ovid Ovid Autoload</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Kotton, Darrell N</creator><creatorcontrib>Kotton, Darrell N</creatorcontrib><description>Claudin 18 (CLDN18) is a tight junction protein that is highly expressed in the lung. While mice lacking CLDN18 exhibit the expected loss of epithelial integrity in the lung, these animals also have unexpectedly large lungs. In this issue of the JCI, Zhou, Flodby, and colleagues reveal that the increased lung size of Cldn18-/- mice is the result of increased type 2 alveolar epithelial (AT2) cell proliferation. This increase in proliferation was shown to be driven by translocation of the transcriptional regulator Yes-associated protein (YAP) to the nucleus and subsequent induction of proliferative pathways. CLDN18-deficent mice also had increased frequency of lung adenocarcinomas. Together, the results of this study advance our understanding of the mechanisms that likely regulate homeostasis of the normal lung as well as promote the proliferative state of malignant cells found in lung adenocarcinomas thought to originate from AT2 cells.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI99799</identifier><identifier>PMID: 29400691</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adaptor Proteins, Signal Transducing ; Alveolar Epithelial Cells ; Alveoli ; Animals ; Biomedical research ; Carcinogenesis ; Care and treatment ; Cell cycle ; Cell Cycle Proteins ; Cell growth ; Cell Proliferation ; Claudins ; Conflicts of interest ; Development and progression ; Epithelial cells ; Gene expression ; Genetic aspects ; Health aspects ; Homeostasis ; Kinases ; Lung cancer ; Lung diseases ; Lungs ; Mice ; Phosphoproteins ; Proteins ; Rodents ; Stem Cells ; Tight Junctions ; Transcription ; Transport proteins ; Yes-associated protein</subject><ispartof>The Journal of clinical investigation, 2018-03, Vol.128 (3), p.903-905</ispartof><rights>COPYRIGHT 2018 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Mar 2018</rights><rights>Copyright © 2018, American Society for Clinical Investigation 2018 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-7010d37e51982807b979faa706e4fe8d089b457e455a6526eb5e529dc3a276aa3</citedby><cites>FETCH-LOGICAL-c643t-7010d37e51982807b979faa706e4fe8d089b457e455a6526eb5e529dc3a276aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824920/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824920/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29400691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotton, Darrell N</creatorcontrib><title>Claudin-18: unexpected regulator of lung alveolar epithelial cell proliferation</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Claudin 18 (CLDN18) is a tight junction protein that is highly expressed in the lung. While mice lacking CLDN18 exhibit the expected loss of epithelial integrity in the lung, these animals also have unexpectedly large lungs. In this issue of the JCI, Zhou, Flodby, and colleagues reveal that the increased lung size of Cldn18-/- mice is the result of increased type 2 alveolar epithelial (AT2) cell proliferation. This increase in proliferation was shown to be driven by translocation of the transcriptional regulator Yes-associated protein (YAP) to the nucleus and subsequent induction of proliferative pathways. CLDN18-deficent mice also had increased frequency of lung adenocarcinomas. Together, the results of this study advance our understanding of the mechanisms that likely regulate homeostasis of the normal lung as well as promote the proliferative state of malignant cells found in lung adenocarcinomas thought to originate from AT2 cells.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Alveolar Epithelial Cells</subject><subject>Alveoli</subject><subject>Animals</subject><subject>Biomedical research</subject><subject>Carcinogenesis</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>Claudins</subject><subject>Conflicts of interest</subject><subject>Development and progression</subject><subject>Epithelial cells</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Kinases</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Mice</subject><subject>Phosphoproteins</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Stem Cells</subject><subject>Tight Junctions</subject><subject>Transcription</subject><subject>Transport proteins</subject><subject>Yes-associated protein</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkltr3DAQhUVpaTZpob-gGAqlfXAqyZYl9aEQll62BBZ6exVae-xV0EqOJIfk31dLLo1hH8o8CEbfHIYzB6FXBJ8SwumH78uVlFzKJ2hBGBOloJV4ihYYU1JKXokjdBzjBcakrln9HB1RWWPcSLJA66XVU2dcScTHYnJwPUKboCsCDJPVyYfC94Wd3FBoewXe6lDAaNIWrNG2aMHaYgzemh6CTsa7F-hZr22El3fvCfr95fOv5bfyfP11tTw7L9umrlLJMcFdxYERKajAfJO377XmuIG6B9FhITc141AzphtGG9gwYFR2baUpb7SuTtCnW91x2uyga8GloK0ag9npcKO8Nmr-48xWDf5KMUFrSXEWeHMnEPzlBDGpCz8Fl3dWdO8Tx5KRf9SgLSjjep_F2p2JrTpjFa6a7PBeqzxADeCyKdY76E1uz_jTA3yuDnamPTjwfjaQmQTXadBTjGr188f_s-s_c_btI3YL2qZt9HbaXzLOwXe3YBt8jAH6B6cJVvsIqvsIZvT148s8gPeZq_4CUrDRVw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Kotton, Darrell N</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20180301</creationdate><title>Claudin-18: unexpected regulator of lung alveolar epithelial cell proliferation</title><author>Kotton, Darrell N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-7010d37e51982807b979faa706e4fe8d089b457e455a6526eb5e529dc3a276aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Alveolar Epithelial Cells</topic><topic>Alveoli</topic><topic>Animals</topic><topic>Biomedical research</topic><topic>Carcinogenesis</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>Claudins</topic><topic>Conflicts of interest</topic><topic>Development and progression</topic><topic>Epithelial cells</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Kinases</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Mice</topic><topic>Phosphoproteins</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Stem Cells</topic><topic>Tight Junctions</topic><topic>Transcription</topic><topic>Transport proteins</topic><topic>Yes-associated protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotton, Darrell N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotton, Darrell N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Claudin-18: unexpected regulator of lung alveolar epithelial cell proliferation</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>128</volume><issue>3</issue><spage>903</spage><epage>905</epage><pages>903-905</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Claudin 18 (CLDN18) is a tight junction protein that is highly expressed in the lung. While mice lacking CLDN18 exhibit the expected loss of epithelial integrity in the lung, these animals also have unexpectedly large lungs. In this issue of the JCI, Zhou, Flodby, and colleagues reveal that the increased lung size of Cldn18-/- mice is the result of increased type 2 alveolar epithelial (AT2) cell proliferation. This increase in proliferation was shown to be driven by translocation of the transcriptional regulator Yes-associated protein (YAP) to the nucleus and subsequent induction of proliferative pathways. CLDN18-deficent mice also had increased frequency of lung adenocarcinomas. Together, the results of this study advance our understanding of the mechanisms that likely regulate homeostasis of the normal lung as well as promote the proliferative state of malignant cells found in lung adenocarcinomas thought to originate from AT2 cells.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>29400691</pmid><doi>10.1172/JCI99799</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2018-03, Vol.128 (3), p.903-905
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5824920
source MEDLINE; Journals@Ovid Ovid Autoload; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Adaptor Proteins, Signal Transducing
Alveolar Epithelial Cells
Alveoli
Animals
Biomedical research
Carcinogenesis
Care and treatment
Cell cycle
Cell Cycle Proteins
Cell growth
Cell Proliferation
Claudins
Conflicts of interest
Development and progression
Epithelial cells
Gene expression
Genetic aspects
Health aspects
Homeostasis
Kinases
Lung cancer
Lung diseases
Lungs
Mice
Phosphoproteins
Proteins
Rodents
Stem Cells
Tight Junctions
Transcription
Transport proteins
Yes-associated protein
title Claudin-18: unexpected regulator of lung alveolar epithelial cell proliferation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Claudin-18:%20unexpected%20regulator%20of%20lung%20alveolar%20epithelial%20cell%20proliferation&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Kotton,%20Darrell%20N&rft.date=2018-03-01&rft.volume=128&rft.issue=3&rft.spage=903&rft.epage=905&rft.pages=903-905&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI99799&rft_dat=%3Cgale_pubme%3EA530360210%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014470951&rft_id=info:pmid/29400691&rft_galeid=A530360210&rfr_iscdi=true