Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity

Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2018-03, Vol.128 (3), p.1043-1056
Hauptverfasser: Chai, Sam, Wan, Xiaoping, Ramirez-Navarro, Angelina, Tesar, Paul J, Kaufman, Elizabeth S, Ficker, Eckhard, George, Jr, Alfred L, Deschênes, Isabelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1056
container_issue 3
container_start_page 1043
container_title The Journal of clinical investigation
container_volume 128
creator Chai, Sam
Wan, Xiaoping
Ramirez-Navarro, Angelina
Tesar, Paul J
Kaufman, Elizabeth S
Ficker, Eckhard
George, Jr, Alfred L
Deschênes, Isabelle
description Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an LQT2 family by using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and whole exome sequencing in a synergistic manner. We found that iPSC-CMs recapitulated the clinical genotype-phenotype discordance in vitro. Importantly, iPSC-CMs derived from the severely affected LQT2 patients displayed prolonged action potentials compared with cells from mildly affected first-degree relatives. The iPSC-CMs derived from all patients with hERG R752W mutation displayed lower IKr amplitude. Interestingly, iPSC-CMs from severely affected mutation-positive individuals exhibited greater L-type Ca2+ current. Whole exome sequencing identified variants of KCNK17 and the GTP-binding protein REM2, providing biologically plausible explanations for this variable expressivity. Genome editing to correct a REM2 variant reversed the enhanced L-type Ca2+ current and prolonged action potential observed in iPSC-CMs from severely affected individuals. Thus, our findings showcase the power of combining complementary physiological and genomic analyses to identify genetic modifiers and potential therapeutic targets of a monogenic disorder. Furthermore, we propose that this strategy can be deployed to unravel myriad confounding pathologies displaying variable expressivity.
doi_str_mv 10.1172/JCI94996
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5824853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530360223</galeid><sourcerecordid>A530360223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-acd5ce505f077bb580ea65d4ff8517d2f30e21a58974e23b1c743249bc3098d93</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiNERZeCxBMgS0gILlJ83MQ3SNWKw6JK5VDg0nKcSdZVYi-xU5G3x1G3pYv2AvnC0vibf8b_TJY9I_iUkIK--bRaSy7l8kG2IEKUeUlZ-TBbYExJLgtWHmePQ7jCmHAu-KPsmErOSMHIIvv5eTMF6zvfWqM71ILzvTUB2RpctI2FMMcgWoN6X8-BISDfoM67Fn25RGFy9eB7QHHaAqIowDUMNk5PsqNGdwGe7u6T7Pv7d5erj_n5xYf16uw8N0vOYq5NLQwILBpcFFUlSgx6KWreNKUgRU0bhoESLUpZcKCsIqbgjHJZGYZlWUt2kr290d2OVQ-1SV0PulPbwfZ6mJTXVu2_OLtRrb9WoqS8FCwJvNoJDP7XCCGq3gYDXacd-DEoOruGmSQ0oS_-Qa_8OLj0vUQlawssJftLtboDZV3jU10zi6ozwTBbYkpnKj9AzVanJr2DxqbwHn96gE-nhjSvgwmv9xISE-F3bPUYglp_-_r_7MWPffblPXYDuoub4LsxWu_CPrgz1gw-hAGau6EQrOatVbdbm9Dn94d4B96uKfsD6G_ijQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014470993</pqid></control><display><type>article</type><title>Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity</title><source>Journals@Ovid Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chai, Sam ; Wan, Xiaoping ; Ramirez-Navarro, Angelina ; Tesar, Paul J ; Kaufman, Elizabeth S ; Ficker, Eckhard ; George, Jr, Alfred L ; Deschênes, Isabelle</creator><creatorcontrib>Chai, Sam ; Wan, Xiaoping ; Ramirez-Navarro, Angelina ; Tesar, Paul J ; Kaufman, Elizabeth S ; Ficker, Eckhard ; George, Jr, Alfred L ; Deschênes, Isabelle</creatorcontrib><description>Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an LQT2 family by using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and whole exome sequencing in a synergistic manner. We found that iPSC-CMs recapitulated the clinical genotype-phenotype discordance in vitro. Importantly, iPSC-CMs derived from the severely affected LQT2 patients displayed prolonged action potentials compared with cells from mildly affected first-degree relatives. The iPSC-CMs derived from all patients with hERG R752W mutation displayed lower IKr amplitude. Interestingly, iPSC-CMs from severely affected mutation-positive individuals exhibited greater L-type Ca2+ current. Whole exome sequencing identified variants of KCNK17 and the GTP-binding protein REM2, providing biologically plausible explanations for this variable expressivity. Genome editing to correct a REM2 variant reversed the enhanced L-type Ca2+ current and prolonged action potential observed in iPSC-CMs from severely affected individuals. Thus, our findings showcase the power of combining complementary physiological and genomic analyses to identify genetic modifiers and potential therapeutic targets of a monogenic disorder. Furthermore, we propose that this strategy can be deployed to unravel myriad confounding pathologies displaying variable expressivity.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI94996</identifier><identifier>PMID: 29431731</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Action potential ; Biomedical research ; Cardiac arrhythmia ; Cardiomyocytes ; Care and treatment ; Channelopathy ; Comparative analysis ; Development and progression ; Discordance ; Electrocardiography ; Gene expression ; Genetic analysis ; Genetic aspects ; Genome editing ; Genomic analysis ; Genotypes ; GTP-binding protein ; Health aspects ; Kinases ; Long QT syndrome ; Mutation ; Phenotypes ; Pluripotency ; Potassium channels ; Stem cells ; Therapeutic applications</subject><ispartof>The Journal of clinical investigation, 2018-03, Vol.128 (3), p.1043-1056</ispartof><rights>COPYRIGHT 2018 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Mar 2018</rights><rights>Copyright © 2018, American Society for Clinical Investigation 2018 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-acd5ce505f077bb580ea65d4ff8517d2f30e21a58974e23b1c743249bc3098d93</citedby><cites>FETCH-LOGICAL-c643t-acd5ce505f077bb580ea65d4ff8517d2f30e21a58974e23b1c743249bc3098d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824853/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824853/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29431731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chai, Sam</creatorcontrib><creatorcontrib>Wan, Xiaoping</creatorcontrib><creatorcontrib>Ramirez-Navarro, Angelina</creatorcontrib><creatorcontrib>Tesar, Paul J</creatorcontrib><creatorcontrib>Kaufman, Elizabeth S</creatorcontrib><creatorcontrib>Ficker, Eckhard</creatorcontrib><creatorcontrib>George, Jr, Alfred L</creatorcontrib><creatorcontrib>Deschênes, Isabelle</creatorcontrib><title>Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an LQT2 family by using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and whole exome sequencing in a synergistic manner. We found that iPSC-CMs recapitulated the clinical genotype-phenotype discordance in vitro. Importantly, iPSC-CMs derived from the severely affected LQT2 patients displayed prolonged action potentials compared with cells from mildly affected first-degree relatives. The iPSC-CMs derived from all patients with hERG R752W mutation displayed lower IKr amplitude. Interestingly, iPSC-CMs from severely affected mutation-positive individuals exhibited greater L-type Ca2+ current. Whole exome sequencing identified variants of KCNK17 and the GTP-binding protein REM2, providing biologically plausible explanations for this variable expressivity. Genome editing to correct a REM2 variant reversed the enhanced L-type Ca2+ current and prolonged action potential observed in iPSC-CMs from severely affected individuals. Thus, our findings showcase the power of combining complementary physiological and genomic analyses to identify genetic modifiers and potential therapeutic targets of a monogenic disorder. Furthermore, we propose that this strategy can be deployed to unravel myriad confounding pathologies displaying variable expressivity.</description><subject>Action potential</subject><subject>Biomedical research</subject><subject>Cardiac arrhythmia</subject><subject>Cardiomyocytes</subject><subject>Care and treatment</subject><subject>Channelopathy</subject><subject>Comparative analysis</subject><subject>Development and progression</subject><subject>Discordance</subject><subject>Electrocardiography</subject><subject>Gene expression</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genome editing</subject><subject>Genomic analysis</subject><subject>Genotypes</subject><subject>GTP-binding protein</subject><subject>Health aspects</subject><subject>Kinases</subject><subject>Long QT syndrome</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Pluripotency</subject><subject>Potassium channels</subject><subject>Stem cells</subject><subject>Therapeutic applications</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkttu1DAQhiNERZeCxBMgS0gILlJ83MQ3SNWKw6JK5VDg0nKcSdZVYi-xU5G3x1G3pYv2AvnC0vibf8b_TJY9I_iUkIK--bRaSy7l8kG2IEKUeUlZ-TBbYExJLgtWHmePQ7jCmHAu-KPsmErOSMHIIvv5eTMF6zvfWqM71ILzvTUB2RpctI2FMMcgWoN6X8-BISDfoM67Fn25RGFy9eB7QHHaAqIowDUMNk5PsqNGdwGe7u6T7Pv7d5erj_n5xYf16uw8N0vOYq5NLQwILBpcFFUlSgx6KWreNKUgRU0bhoESLUpZcKCsIqbgjHJZGYZlWUt2kr290d2OVQ-1SV0PulPbwfZ6mJTXVu2_OLtRrb9WoqS8FCwJvNoJDP7XCCGq3gYDXacd-DEoOruGmSQ0oS_-Qa_8OLj0vUQlawssJftLtboDZV3jU10zi6ozwTBbYkpnKj9AzVanJr2DxqbwHn96gE-nhjSvgwmv9xISE-F3bPUYglp_-_r_7MWPffblPXYDuoub4LsxWu_CPrgz1gw-hAGau6EQrOatVbdbm9Dn94d4B96uKfsD6G_ijQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Chai, Sam</creator><creator>Wan, Xiaoping</creator><creator>Ramirez-Navarro, Angelina</creator><creator>Tesar, Paul J</creator><creator>Kaufman, Elizabeth S</creator><creator>Ficker, Eckhard</creator><creator>George, Jr, Alfred L</creator><creator>Deschênes, Isabelle</creator><general>American Society for Clinical Investigation</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180301</creationdate><title>Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity</title><author>Chai, Sam ; Wan, Xiaoping ; Ramirez-Navarro, Angelina ; Tesar, Paul J ; Kaufman, Elizabeth S ; Ficker, Eckhard ; George, Jr, Alfred L ; Deschênes, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-acd5ce505f077bb580ea65d4ff8517d2f30e21a58974e23b1c743249bc3098d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action potential</topic><topic>Biomedical research</topic><topic>Cardiac arrhythmia</topic><topic>Cardiomyocytes</topic><topic>Care and treatment</topic><topic>Channelopathy</topic><topic>Comparative analysis</topic><topic>Development and progression</topic><topic>Discordance</topic><topic>Electrocardiography</topic><topic>Gene expression</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genome editing</topic><topic>Genomic analysis</topic><topic>Genotypes</topic><topic>GTP-binding protein</topic><topic>Health aspects</topic><topic>Kinases</topic><topic>Long QT syndrome</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Pluripotency</topic><topic>Potassium channels</topic><topic>Stem cells</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Sam</creatorcontrib><creatorcontrib>Wan, Xiaoping</creatorcontrib><creatorcontrib>Ramirez-Navarro, Angelina</creatorcontrib><creatorcontrib>Tesar, Paul J</creatorcontrib><creatorcontrib>Kaufman, Elizabeth S</creatorcontrib><creatorcontrib>Ficker, Eckhard</creatorcontrib><creatorcontrib>George, Jr, Alfred L</creatorcontrib><creatorcontrib>Deschênes, Isabelle</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, Sam</au><au>Wan, Xiaoping</au><au>Ramirez-Navarro, Angelina</au><au>Tesar, Paul J</au><au>Kaufman, Elizabeth S</au><au>Ficker, Eckhard</au><au>George, Jr, Alfred L</au><au>Deschênes, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>128</volume><issue>3</issue><spage>1043</spage><epage>1056</epage><pages>1043-1056</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an LQT2 family by using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and whole exome sequencing in a synergistic manner. We found that iPSC-CMs recapitulated the clinical genotype-phenotype discordance in vitro. Importantly, iPSC-CMs derived from the severely affected LQT2 patients displayed prolonged action potentials compared with cells from mildly affected first-degree relatives. The iPSC-CMs derived from all patients with hERG R752W mutation displayed lower IKr amplitude. Interestingly, iPSC-CMs from severely affected mutation-positive individuals exhibited greater L-type Ca2+ current. Whole exome sequencing identified variants of KCNK17 and the GTP-binding protein REM2, providing biologically plausible explanations for this variable expressivity. Genome editing to correct a REM2 variant reversed the enhanced L-type Ca2+ current and prolonged action potential observed in iPSC-CMs from severely affected individuals. Thus, our findings showcase the power of combining complementary physiological and genomic analyses to identify genetic modifiers and potential therapeutic targets of a monogenic disorder. Furthermore, we propose that this strategy can be deployed to unravel myriad confounding pathologies displaying variable expressivity.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>29431731</pmid><doi>10.1172/JCI94996</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2018-03, Vol.128 (3), p.1043-1056
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5824853
source Journals@Ovid Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Action potential
Biomedical research
Cardiac arrhythmia
Cardiomyocytes
Care and treatment
Channelopathy
Comparative analysis
Development and progression
Discordance
Electrocardiography
Gene expression
Genetic analysis
Genetic aspects
Genome editing
Genomic analysis
Genotypes
GTP-binding protein
Health aspects
Kinases
Long QT syndrome
Mutation
Phenotypes
Pluripotency
Potassium channels
Stem cells
Therapeutic applications
title Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20genomics%20identifies%20genetic%20modifiers%20of%20long%20QT%20syndrome%20type%202%20severity&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Chai,%20Sam&rft.date=2018-03-01&rft.volume=128&rft.issue=3&rft.spage=1043&rft.epage=1056&rft.pages=1043-1056&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI94996&rft_dat=%3Cgale_pubme%3EA530360223%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014470993&rft_id=info:pmid/29431731&rft_galeid=A530360223&rfr_iscdi=true