Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias

Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic org...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-02, Vol.8 (1), p.3159-13, Article 3159
Hauptverfasser: Krishnakumar, Raga, Sinha, Anupama, Bird, Sara W., Jayamohan, Harikrishnan, Edwards, Harrison S., Schoeniger, Joseph S., Patel, Kamlesh D., Branda, Steven S., Bartsch, Michael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 3159
container_title Scientific reports
container_volume 8
creator Krishnakumar, Raga
Sinha, Anupama
Bird, Sara W.
Jayamohan, Harikrishnan
Edwards, Harrison S.
Schoeniger, Joseph S.
Patel, Kamlesh D.
Branda, Steven S.
Bartsch, Michael S.
description Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.
doi_str_mv 10.1038/s41598-018-21484-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002649471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-76f87dac05f42731f3781a21b08345247e1e3cbf083b07e45e4276bbc43953183</originalsourceid><addsrcrecordid>eNp9kstu1TAQhi0EolXpC7BAFmzYBHw9cTZIqKJQqdAFsLYcn3GPq8Q-2A5Vefo6SSmFBd6ML9_847kg9JySN5Rw9TYLKjvVEKoaRoUSzfUjdMiIkA3jjD1-sD9Axzlfkbok6wTtnqKDaiUXkh2iX19vcoHRFG-xCVucS7Q7k-ejD26YIFjIOAZcdoD3kFxMo6l3OLrl6rMPZxdfcDAh7mMCnOHH4pOwsSnmjA1OJlwufJjsALH4LeDem_wMPXFmyHB8Z4_Q99MP304-NecXH89O3p83VhJamnbjVLs1lkgnWMup462ihtGeqDkF0QIFbntXjz1pQUio2KbvreCd5FTxI_Ru1d1P_QhbC6EkM-h98qNJNzoar_9-CX6nL-NPLRXdbERXBV6uArHWRWfrC9idjSGALZoKTjoiKvT6LkqKtQS56NFnC8NgAsQpa0YIrw2gatZ79Q96FacUag1mitWQoqWVYiu11DGBu_8xJXoeAb2OgK4joJcR0NfV6cXDXO9dfje8AnwFcn2qfUl_Yv9H9hZ4Gr1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002649471</pqid></control><display><type>article</type><title>Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias</title><source>Nature Free</source><source>Springer_OA刊</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Krishnakumar, Raga ; Sinha, Anupama ; Bird, Sara W. ; Jayamohan, Harikrishnan ; Edwards, Harrison S. ; Schoeniger, Joseph S. ; Patel, Kamlesh D. ; Branda, Steven S. ; Bartsch, Michael S.</creator><creatorcontrib>Krishnakumar, Raga ; Sinha, Anupama ; Bird, Sara W. ; Jayamohan, Harikrishnan ; Edwards, Harrison S. ; Schoeniger, Joseph S. ; Patel, Kamlesh D. ; Branda, Steven S. ; Bartsch, Michael S. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-21484-w</identifier><identifier>PMID: 29453452</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/22 ; 631/114/1767 ; 631/114/2785 ; 631/326/421 ; BASIC BIOLOGICAL SCIENCES ; Genomes ; Humanities and Social Sciences ; multidisciplinary ; Neural networks ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2018-02, Vol.8 (1), p.3159-13, Article 3159</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-76f87dac05f42731f3781a21b08345247e1e3cbf083b07e45e4276bbc43953183</citedby><cites>FETCH-LOGICAL-c501t-76f87dac05f42731f3781a21b08345247e1e3cbf083b07e45e4276bbc43953183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816649/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816649/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29453452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1430904$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnakumar, Raga</creatorcontrib><creatorcontrib>Sinha, Anupama</creatorcontrib><creatorcontrib>Bird, Sara W.</creatorcontrib><creatorcontrib>Jayamohan, Harikrishnan</creatorcontrib><creatorcontrib>Edwards, Harrison S.</creatorcontrib><creatorcontrib>Schoeniger, Joseph S.</creatorcontrib><creatorcontrib>Patel, Kamlesh D.</creatorcontrib><creatorcontrib>Branda, Steven S.</creatorcontrib><creatorcontrib>Bartsch, Michael S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.</description><subject>45</subject><subject>45/22</subject><subject>631/114/1767</subject><subject>631/114/2785</subject><subject>631/326/421</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kstu1TAQhi0EolXpC7BAFmzYBHw9cTZIqKJQqdAFsLYcn3GPq8Q-2A5Vefo6SSmFBd6ML9_847kg9JySN5Rw9TYLKjvVEKoaRoUSzfUjdMiIkA3jjD1-sD9Axzlfkbok6wTtnqKDaiUXkh2iX19vcoHRFG-xCVucS7Q7k-ejD26YIFjIOAZcdoD3kFxMo6l3OLrl6rMPZxdfcDAh7mMCnOHH4pOwsSnmjA1OJlwufJjsALH4LeDem_wMPXFmyHB8Z4_Q99MP304-NecXH89O3p83VhJamnbjVLs1lkgnWMup462ihtGeqDkF0QIFbntXjz1pQUio2KbvreCd5FTxI_Ru1d1P_QhbC6EkM-h98qNJNzoar_9-CX6nL-NPLRXdbERXBV6uArHWRWfrC9idjSGALZoKTjoiKvT6LkqKtQS56NFnC8NgAsQpa0YIrw2gatZ79Q96FacUag1mitWQoqWVYiu11DGBu_8xJXoeAb2OgK4joJcR0NfV6cXDXO9dfje8AnwFcn2qfUl_Yv9H9hZ4Gr1A</recordid><startdate>20180216</startdate><enddate>20180216</enddate><creator>Krishnakumar, Raga</creator><creator>Sinha, Anupama</creator><creator>Bird, Sara W.</creator><creator>Jayamohan, Harikrishnan</creator><creator>Edwards, Harrison S.</creator><creator>Schoeniger, Joseph S.</creator><creator>Patel, Kamlesh D.</creator><creator>Branda, Steven S.</creator><creator>Bartsch, Michael S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20180216</creationdate><title>Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias</title><author>Krishnakumar, Raga ; Sinha, Anupama ; Bird, Sara W. ; Jayamohan, Harikrishnan ; Edwards, Harrison S. ; Schoeniger, Joseph S. ; Patel, Kamlesh D. ; Branda, Steven S. ; Bartsch, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-76f87dac05f42731f3781a21b08345247e1e3cbf083b07e45e4276bbc43953183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>45</topic><topic>45/22</topic><topic>631/114/1767</topic><topic>631/114/2785</topic><topic>631/326/421</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnakumar, Raga</creatorcontrib><creatorcontrib>Sinha, Anupama</creatorcontrib><creatorcontrib>Bird, Sara W.</creatorcontrib><creatorcontrib>Jayamohan, Harikrishnan</creatorcontrib><creatorcontrib>Edwards, Harrison S.</creatorcontrib><creatorcontrib>Schoeniger, Joseph S.</creatorcontrib><creatorcontrib>Patel, Kamlesh D.</creatorcontrib><creatorcontrib>Branda, Steven S.</creatorcontrib><creatorcontrib>Bartsch, Michael S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnakumar, Raga</au><au>Sinha, Anupama</au><au>Bird, Sara W.</au><au>Jayamohan, Harikrishnan</au><au>Edwards, Harrison S.</au><au>Schoeniger, Joseph S.</au><au>Patel, Kamlesh D.</au><au>Branda, Steven S.</au><au>Bartsch, Michael S.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-02-16</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>3159</spage><epage>13</epage><pages>3159-13</pages><artnum>3159</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29453452</pmid><doi>10.1038/s41598-018-21484-w</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-02, Vol.8 (1), p.3159-13, Article 3159
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816649
source Nature Free; Springer_OA刊; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 45
45/22
631/114/1767
631/114/2785
631/326/421
BASIC BIOLOGICAL SCIENCES
Genomes
Humanities and Social Sciences
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
title Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20and%20stochastic%20influences%20on%20the%20performance%20of%20the%20MinION%20nanopore%20sequencer%20across%20a%20range%20of%20nucleotide%20bias&rft.jtitle=Scientific%20reports&rft.au=Krishnakumar,%20Raga&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-02-16&rft.volume=8&rft.issue=1&rft.spage=3159&rft.epage=13&rft.pages=3159-13&rft.artnum=3159&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-21484-w&rft_dat=%3Cproquest_pubme%3E2002649471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002649471&rft_id=info:pmid/29453452&rfr_iscdi=true