Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias
Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic org...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-02, Vol.8 (1), p.3159-13, Article 3159 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 3159 |
container_title | Scientific reports |
container_volume | 8 |
creator | Krishnakumar, Raga Sinha, Anupama Bird, Sara W. Jayamohan, Harikrishnan Edwards, Harrison S. Schoeniger, Joseph S. Patel, Kamlesh D. Branda, Steven S. Bartsch, Michael S. |
description | Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics. |
doi_str_mv | 10.1038/s41598-018-21484-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002649471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-76f87dac05f42731f3781a21b08345247e1e3cbf083b07e45e4276bbc43953183</originalsourceid><addsrcrecordid>eNp9kstu1TAQhi0EolXpC7BAFmzYBHw9cTZIqKJQqdAFsLYcn3GPq8Q-2A5Vefo6SSmFBd6ML9_847kg9JySN5Rw9TYLKjvVEKoaRoUSzfUjdMiIkA3jjD1-sD9Axzlfkbok6wTtnqKDaiUXkh2iX19vcoHRFG-xCVucS7Q7k-ejD26YIFjIOAZcdoD3kFxMo6l3OLrl6rMPZxdfcDAh7mMCnOHH4pOwsSnmjA1OJlwufJjsALH4LeDem_wMPXFmyHB8Z4_Q99MP304-NecXH89O3p83VhJamnbjVLs1lkgnWMup462ihtGeqDkF0QIFbntXjz1pQUio2KbvreCd5FTxI_Ru1d1P_QhbC6EkM-h98qNJNzoar_9-CX6nL-NPLRXdbERXBV6uArHWRWfrC9idjSGALZoKTjoiKvT6LkqKtQS56NFnC8NgAsQpa0YIrw2gatZ79Q96FacUag1mitWQoqWVYiu11DGBu_8xJXoeAb2OgK4joJcR0NfV6cXDXO9dfje8AnwFcn2qfUl_Yv9H9hZ4Gr1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002649471</pqid></control><display><type>article</type><title>Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias</title><source>Nature Free</source><source>Springer_OA刊</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Krishnakumar, Raga ; Sinha, Anupama ; Bird, Sara W. ; Jayamohan, Harikrishnan ; Edwards, Harrison S. ; Schoeniger, Joseph S. ; Patel, Kamlesh D. ; Branda, Steven S. ; Bartsch, Michael S.</creator><creatorcontrib>Krishnakumar, Raga ; Sinha, Anupama ; Bird, Sara W. ; Jayamohan, Harikrishnan ; Edwards, Harrison S. ; Schoeniger, Joseph S. ; Patel, Kamlesh D. ; Branda, Steven S. ; Bartsch, Michael S. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-21484-w</identifier><identifier>PMID: 29453452</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/22 ; 631/114/1767 ; 631/114/2785 ; 631/326/421 ; BASIC BIOLOGICAL SCIENCES ; Genomes ; Humanities and Social Sciences ; multidisciplinary ; Neural networks ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2018-02, Vol.8 (1), p.3159-13, Article 3159</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-76f87dac05f42731f3781a21b08345247e1e3cbf083b07e45e4276bbc43953183</citedby><cites>FETCH-LOGICAL-c501t-76f87dac05f42731f3781a21b08345247e1e3cbf083b07e45e4276bbc43953183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816649/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816649/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29453452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1430904$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnakumar, Raga</creatorcontrib><creatorcontrib>Sinha, Anupama</creatorcontrib><creatorcontrib>Bird, Sara W.</creatorcontrib><creatorcontrib>Jayamohan, Harikrishnan</creatorcontrib><creatorcontrib>Edwards, Harrison S.</creatorcontrib><creatorcontrib>Schoeniger, Joseph S.</creatorcontrib><creatorcontrib>Patel, Kamlesh D.</creatorcontrib><creatorcontrib>Branda, Steven S.</creatorcontrib><creatorcontrib>Bartsch, Michael S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.</description><subject>45</subject><subject>45/22</subject><subject>631/114/1767</subject><subject>631/114/2785</subject><subject>631/326/421</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kstu1TAQhi0EolXpC7BAFmzYBHw9cTZIqKJQqdAFsLYcn3GPq8Q-2A5Vefo6SSmFBd6ML9_847kg9JySN5Rw9TYLKjvVEKoaRoUSzfUjdMiIkA3jjD1-sD9Axzlfkbok6wTtnqKDaiUXkh2iX19vcoHRFG-xCVucS7Q7k-ejD26YIFjIOAZcdoD3kFxMo6l3OLrl6rMPZxdfcDAh7mMCnOHH4pOwsSnmjA1OJlwufJjsALH4LeDem_wMPXFmyHB8Z4_Q99MP304-NecXH89O3p83VhJamnbjVLs1lkgnWMup462ihtGeqDkF0QIFbntXjz1pQUio2KbvreCd5FTxI_Ru1d1P_QhbC6EkM-h98qNJNzoar_9-CX6nL-NPLRXdbERXBV6uArHWRWfrC9idjSGALZoKTjoiKvT6LkqKtQS56NFnC8NgAsQpa0YIrw2gatZ79Q96FacUag1mitWQoqWVYiu11DGBu_8xJXoeAb2OgK4joJcR0NfV6cXDXO9dfje8AnwFcn2qfUl_Yv9H9hZ4Gr1A</recordid><startdate>20180216</startdate><enddate>20180216</enddate><creator>Krishnakumar, Raga</creator><creator>Sinha, Anupama</creator><creator>Bird, Sara W.</creator><creator>Jayamohan, Harikrishnan</creator><creator>Edwards, Harrison S.</creator><creator>Schoeniger, Joseph S.</creator><creator>Patel, Kamlesh D.</creator><creator>Branda, Steven S.</creator><creator>Bartsch, Michael S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20180216</creationdate><title>Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias</title><author>Krishnakumar, Raga ; Sinha, Anupama ; Bird, Sara W. ; Jayamohan, Harikrishnan ; Edwards, Harrison S. ; Schoeniger, Joseph S. ; Patel, Kamlesh D. ; Branda, Steven S. ; Bartsch, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-76f87dac05f42731f3781a21b08345247e1e3cbf083b07e45e4276bbc43953183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>45</topic><topic>45/22</topic><topic>631/114/1767</topic><topic>631/114/2785</topic><topic>631/326/421</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnakumar, Raga</creatorcontrib><creatorcontrib>Sinha, Anupama</creatorcontrib><creatorcontrib>Bird, Sara W.</creatorcontrib><creatorcontrib>Jayamohan, Harikrishnan</creatorcontrib><creatorcontrib>Edwards, Harrison S.</creatorcontrib><creatorcontrib>Schoeniger, Joseph S.</creatorcontrib><creatorcontrib>Patel, Kamlesh D.</creatorcontrib><creatorcontrib>Branda, Steven S.</creatorcontrib><creatorcontrib>Bartsch, Michael S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnakumar, Raga</au><au>Sinha, Anupama</au><au>Bird, Sara W.</au><au>Jayamohan, Harikrishnan</au><au>Edwards, Harrison S.</au><au>Schoeniger, Joseph S.</au><au>Patel, Kamlesh D.</au><au>Branda, Steven S.</au><au>Bartsch, Michael S.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-02-16</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>3159</spage><epage>13</epage><pages>3159-13</pages><artnum>3159</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29453452</pmid><doi>10.1038/s41598-018-21484-w</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-02, Vol.8 (1), p.3159-13, Article 3159 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816649 |
source | Nature Free; Springer_OA刊; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 45 45/22 631/114/1767 631/114/2785 631/326/421 BASIC BIOLOGICAL SCIENCES Genomes Humanities and Social Sciences multidisciplinary Neural networks Science Science (multidisciplinary) |
title | Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20and%20stochastic%20influences%20on%20the%20performance%20of%20the%20MinION%20nanopore%20sequencer%20across%20a%20range%20of%20nucleotide%20bias&rft.jtitle=Scientific%20reports&rft.au=Krishnakumar,%20Raga&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-02-16&rft.volume=8&rft.issue=1&rft.spage=3159&rft.epage=13&rft.pages=3159-13&rft.artnum=3159&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-21484-w&rft_dat=%3Cproquest_pubme%3E2002649471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002649471&rft_id=info:pmid/29453452&rfr_iscdi=true |