Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex

Arp2/3 complex nucleates branched actin filaments important for cellular motility and endocytosis. WASP family proteins are Arp2/3 complex activators that play multiple roles in branching nucleation, but little is known about the structural bases of these WASP functions, owing to an incomplete under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-02, Vol.115 (7), p.E1409-E1418
Hauptverfasser: Luan, Qing, Zelter, Alex, MacCoss, Michael J., Davis, Trisha N., Nolen, Brad J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1418
container_issue 7
container_start_page E1409
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Luan, Qing
Zelter, Alex
MacCoss, Michael J.
Davis, Trisha N.
Nolen, Brad J.
description Arp2/3 complex nucleates branched actin filaments important for cellular motility and endocytosis. WASP family proteins are Arp2/3 complex activators that play multiple roles in branching nucleation, but little is known about the structural bases of these WASP functions, owing to an incomplete understanding of how WASP binds Arp2/3 complex. Recent data show WASP binds two sites, and biochemical and structural studies led to models in which the WASP C segment engages the barbed ends of the Arp3 and Arp2 subunits while the WASP A segment binds the back side of the complex on Arp3. However, electron microscopy reconstructions showed density for WASP inconsistent with these models on the opposite (front) side of Arp2/3 complex. Here we use chemical cross-linking and mass spectrometry (XL-MS) along with computational docking and structure-based mutational analysis to map the two WASP binding sites on the complex. Our data corroborate the barbed end and back side binding models and show one WASP binding site on Arp3, on the back side of the complex, and a second site on the bottom of the complex, spanning Arp2 and ARPC1. The XL-MS-identified cross-links rule out the front side binding model and show that the A segment of WASP binds along the bottom side of the ARPC1 subunit, instead of at the Arp2/ARPC1 interface, as suggested by FRET experiments. The identified binding sites support the Arp3 tail release model to explain WASP-mediated activating conformational changes in Arp2/3 complex and provide insight into the roles of WASP in branching nucleation.
doi_str_mv 10.1073/pnas.1716622115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26507376</jstor_id><sourcerecordid>26507376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-ee8329dc97e0ed8df759e5f95a3b84ec5180f28236c2c33b97b65f93ae28b4973</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EosPAmhXIEpuySMePxLE3SKOKR6VKIAHq0nKcm46HxA62g-iKv45HU1pg5cX57vG95yD0nJIzSlq-mb1JZ7SlQjBGafMArShRtBK1Ig_RihDWVrJm9Ql6ktKeEKIaSR6jE6a4FFzxFfp10YPPbnDWZBc8DgO-culbyLnajn10dofTje9jmADPMWRwHp9ebT9_eo0753vnr3FyGRIus3kHuIvG2x302Nhc0MGNZiofYL_YEUwOEW_jzDYc2zDNI_x8ih4NZkzw7PZdo6_v3n45_1Bdfnx_cb69rGxd81wBSM5Ub1ULBHrZD22joBlUY3gna7ANlWRgknFhmeW8U20niswNMNnVquVr9OboOy_dBL0tO0Uz6jm6ycQbHYzT_yre7fR1-KEbSQVtm2JwemsQw_cFUtaTSxbG0XgIS9JUKc7lIdiCvvoP3Ycl-nKeZoRSJqgq2a_R5kjZGFKKMNwtQ4k-lKsP5er7csvEy79vuOP_tFmAF0dgn0rS97poil0r-G_K2KvO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011261939</pqid></control><display><type>article</type><title>Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Luan, Qing ; Zelter, Alex ; MacCoss, Michael J. ; Davis, Trisha N. ; Nolen, Brad J.</creator><creatorcontrib>Luan, Qing ; Zelter, Alex ; MacCoss, Michael J. ; Davis, Trisha N. ; Nolen, Brad J.</creatorcontrib><description>Arp2/3 complex nucleates branched actin filaments important for cellular motility and endocytosis. WASP family proteins are Arp2/3 complex activators that play multiple roles in branching nucleation, but little is known about the structural bases of these WASP functions, owing to an incomplete understanding of how WASP binds Arp2/3 complex. Recent data show WASP binds two sites, and biochemical and structural studies led to models in which the WASP C segment engages the barbed ends of the Arp3 and Arp2 subunits while the WASP A segment binds the back side of the complex on Arp3. However, electron microscopy reconstructions showed density for WASP inconsistent with these models on the opposite (front) side of Arp2/3 complex. Here we use chemical cross-linking and mass spectrometry (XL-MS) along with computational docking and structure-based mutational analysis to map the two WASP binding sites on the complex. Our data corroborate the barbed end and back side binding models and show one WASP binding site on Arp3, on the back side of the complex, and a second site on the bottom of the complex, spanning Arp2 and ARPC1. The XL-MS-identified cross-links rule out the front side binding model and show that the A segment of WASP binds along the bottom side of the ARPC1 subunit, instead of at the Arp2/ARPC1 interface, as suggested by FRET experiments. The identified binding sites support the Arp3 tail release model to explain WASP-mediated activating conformational changes in Arp2/3 complex and provide insight into the roles of WASP in branching nucleation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1716622115</identifier><identifier>PMID: 29386393</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin ; Actin Cytoskeleton - chemistry ; Actin Cytoskeleton - metabolism ; Actin-Related Protein 2-3 Complex - chemistry ; Actin-Related Protein 2-3 Complex - metabolism ; Amino Acid Sequence ; Binding Sites ; Biological Sciences ; Cells ; Computer applications ; Crosslinking ; Docking ; Electron microscopy ; Endocytosis ; Filaments ; Fluorescence resonance energy transfer ; Mass spectrometry ; Mass spectroscopy ; Motility ; Mutation ; Nucleation ; PNAS Plus ; Protein Binding ; Protein Conformation ; Protein Interaction Mapping ; Proteins ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Homology ; Wiskott-Aldrich syndrome ; Wiskott-Aldrich Syndrome Protein - chemistry ; Wiskott-Aldrich Syndrome Protein - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-02, Vol.115 (7), p.E1409-E1418</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 13, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-ee8329dc97e0ed8df759e5f95a3b84ec5180f28236c2c33b97b65f93ae28b4973</citedby><cites>FETCH-LOGICAL-c443t-ee8329dc97e0ed8df759e5f95a3b84ec5180f28236c2c33b97b65f93ae28b4973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26507376$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26507376$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29386393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luan, Qing</creatorcontrib><creatorcontrib>Zelter, Alex</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><creatorcontrib>Davis, Trisha N.</creatorcontrib><creatorcontrib>Nolen, Brad J.</creatorcontrib><title>Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Arp2/3 complex nucleates branched actin filaments important for cellular motility and endocytosis. WASP family proteins are Arp2/3 complex activators that play multiple roles in branching nucleation, but little is known about the structural bases of these WASP functions, owing to an incomplete understanding of how WASP binds Arp2/3 complex. Recent data show WASP binds two sites, and biochemical and structural studies led to models in which the WASP C segment engages the barbed ends of the Arp3 and Arp2 subunits while the WASP A segment binds the back side of the complex on Arp3. However, electron microscopy reconstructions showed density for WASP inconsistent with these models on the opposite (front) side of Arp2/3 complex. Here we use chemical cross-linking and mass spectrometry (XL-MS) along with computational docking and structure-based mutational analysis to map the two WASP binding sites on the complex. Our data corroborate the barbed end and back side binding models and show one WASP binding site on Arp3, on the back side of the complex, and a second site on the bottom of the complex, spanning Arp2 and ARPC1. The XL-MS-identified cross-links rule out the front side binding model and show that the A segment of WASP binds along the bottom side of the ARPC1 subunit, instead of at the Arp2/ARPC1 interface, as suggested by FRET experiments. The identified binding sites support the Arp3 tail release model to explain WASP-mediated activating conformational changes in Arp2/3 complex and provide insight into the roles of WASP in branching nucleation.</description><subject>Actin</subject><subject>Actin Cytoskeleton - chemistry</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actin-Related Protein 2-3 Complex - chemistry</subject><subject>Actin-Related Protein 2-3 Complex - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Computer applications</subject><subject>Crosslinking</subject><subject>Docking</subject><subject>Electron microscopy</subject><subject>Endocytosis</subject><subject>Filaments</subject><subject>Fluorescence resonance energy transfer</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Motility</subject><subject>Mutation</subject><subject>Nucleation</subject><subject>PNAS Plus</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Interaction Mapping</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Homology</subject><subject>Wiskott-Aldrich syndrome</subject><subject>Wiskott-Aldrich Syndrome Protein - chemistry</subject><subject>Wiskott-Aldrich Syndrome Protein - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAUhS0EosPAmhXIEpuySMePxLE3SKOKR6VKIAHq0nKcm46HxA62g-iKv45HU1pg5cX57vG95yD0nJIzSlq-mb1JZ7SlQjBGafMArShRtBK1Ig_RihDWVrJm9Ql6ktKeEKIaSR6jE6a4FFzxFfp10YPPbnDWZBc8DgO-culbyLnajn10dofTje9jmADPMWRwHp9ebT9_eo0753vnr3FyGRIus3kHuIvG2x302Nhc0MGNZiofYL_YEUwOEW_jzDYc2zDNI_x8ih4NZkzw7PZdo6_v3n45_1Bdfnx_cb69rGxd81wBSM5Ub1ULBHrZD22joBlUY3gna7ANlWRgknFhmeW8U20niswNMNnVquVr9OboOy_dBL0tO0Uz6jm6ycQbHYzT_yre7fR1-KEbSQVtm2JwemsQw_cFUtaTSxbG0XgIS9JUKc7lIdiCvvoP3Ycl-nKeZoRSJqgq2a_R5kjZGFKKMNwtQ4k-lKsP5er7csvEy79vuOP_tFmAF0dgn0rS97poil0r-G_K2KvO</recordid><startdate>20180213</startdate><enddate>20180213</enddate><creator>Luan, Qing</creator><creator>Zelter, Alex</creator><creator>MacCoss, Michael J.</creator><creator>Davis, Trisha N.</creator><creator>Nolen, Brad J.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180213</creationdate><title>Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex</title><author>Luan, Qing ; Zelter, Alex ; MacCoss, Michael J. ; Davis, Trisha N. ; Nolen, Brad J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-ee8329dc97e0ed8df759e5f95a3b84ec5180f28236c2c33b97b65f93ae28b4973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton - chemistry</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actin-Related Protein 2-3 Complex - chemistry</topic><topic>Actin-Related Protein 2-3 Complex - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Computer applications</topic><topic>Crosslinking</topic><topic>Docking</topic><topic>Electron microscopy</topic><topic>Endocytosis</topic><topic>Filaments</topic><topic>Fluorescence resonance energy transfer</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Motility</topic><topic>Mutation</topic><topic>Nucleation</topic><topic>PNAS Plus</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Interaction Mapping</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Homology</topic><topic>Wiskott-Aldrich syndrome</topic><topic>Wiskott-Aldrich Syndrome Protein - chemistry</topic><topic>Wiskott-Aldrich Syndrome Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luan, Qing</creatorcontrib><creatorcontrib>Zelter, Alex</creatorcontrib><creatorcontrib>MacCoss, Michael J.</creatorcontrib><creatorcontrib>Davis, Trisha N.</creatorcontrib><creatorcontrib>Nolen, Brad J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luan, Qing</au><au>Zelter, Alex</au><au>MacCoss, Michael J.</au><au>Davis, Trisha N.</au><au>Nolen, Brad J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-02-13</date><risdate>2018</risdate><volume>115</volume><issue>7</issue><spage>E1409</spage><epage>E1418</epage><pages>E1409-E1418</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Arp2/3 complex nucleates branched actin filaments important for cellular motility and endocytosis. WASP family proteins are Arp2/3 complex activators that play multiple roles in branching nucleation, but little is known about the structural bases of these WASP functions, owing to an incomplete understanding of how WASP binds Arp2/3 complex. Recent data show WASP binds two sites, and biochemical and structural studies led to models in which the WASP C segment engages the barbed ends of the Arp3 and Arp2 subunits while the WASP A segment binds the back side of the complex on Arp3. However, electron microscopy reconstructions showed density for WASP inconsistent with these models on the opposite (front) side of Arp2/3 complex. Here we use chemical cross-linking and mass spectrometry (XL-MS) along with computational docking and structure-based mutational analysis to map the two WASP binding sites on the complex. Our data corroborate the barbed end and back side binding models and show one WASP binding site on Arp3, on the back side of the complex, and a second site on the bottom of the complex, spanning Arp2 and ARPC1. The XL-MS-identified cross-links rule out the front side binding model and show that the A segment of WASP binds along the bottom side of the ARPC1 subunit, instead of at the Arp2/ARPC1 interface, as suggested by FRET experiments. The identified binding sites support the Arp3 tail release model to explain WASP-mediated activating conformational changes in Arp2/3 complex and provide insight into the roles of WASP in branching nucleation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29386393</pmid><doi>10.1073/pnas.1716622115</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-02, Vol.115 (7), p.E1409-E1418
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816175
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actin
Actin Cytoskeleton - chemistry
Actin Cytoskeleton - metabolism
Actin-Related Protein 2-3 Complex - chemistry
Actin-Related Protein 2-3 Complex - metabolism
Amino Acid Sequence
Binding Sites
Biological Sciences
Cells
Computer applications
Crosslinking
Docking
Electron microscopy
Endocytosis
Filaments
Fluorescence resonance energy transfer
Mass spectrometry
Mass spectroscopy
Motility
Mutation
Nucleation
PNAS Plus
Protein Binding
Protein Conformation
Protein Interaction Mapping
Proteins
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Sequence Homology
Wiskott-Aldrich syndrome
Wiskott-Aldrich Syndrome Protein - chemistry
Wiskott-Aldrich Syndrome Protein - metabolism
title Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Wiskott-Aldrich%20syndrome%20protein%20(WASP)%20binding%20sites%20on%20the%20branched%20actin%20filament%20nucleator%20Arp2/3%20complex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Luan,%20Qing&rft.date=2018-02-13&rft.volume=115&rft.issue=7&rft.spage=E1409&rft.epage=E1418&rft.pages=E1409-E1418&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1716622115&rft_dat=%3Cjstor_pubme%3E26507376%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011261939&rft_id=info:pmid/29386393&rft_jstor_id=26507376&rfr_iscdi=true