Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing
Key message Genomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a composite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection. Perennial ryegrass ( Lolium perenne L.) is a key source of nutrition for r...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2018-03, Vol.131 (3), p.703-720 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 720 |
---|---|
container_issue | 3 |
container_start_page | 703 |
container_title | Theoretical and applied genetics |
container_volume | 131 |
creator | Faville, Marty J. Ganesh, Siva Cao, Mingshu Jahufer, M. Z. Zulfi Bilton, Timothy P. Easton, H. Sydney Ryan, Douglas L. Trethewey, Jason A. K. Rolston, M. Philip Griffiths, Andrew G. Moraga, Roger Flay, Casey Schmidt, Jana Tan, Rachel Barrett, Brent A. |
description | Key message
Genomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a composite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection.
Perennial ryegrass (
Lolium perenne
L.) is a key source of nutrition for ruminant livestock in temperate environments worldwide. Higher seasonal and annual yield of herbage dry matter (DMY) is a principal breeding objective but the historical realised rate of genetic gain for DMY is modest. Genomic selection was investigated as a tool to enhance the rate of genetic gain. Genotyping-by-sequencing (GBS) was undertaken in a multi-population (MP) training set of five populations, phenotyped as half-sibling (HS) families in five environments over 2 years for mean herbage accumulation (HA), a measure of DMY potential. GBS using the ApeKI enzyme yielded 1.02 million single-nucleotide polymorphism (SNP) markers from a training set of
n
= 517. MP-based genomic prediction models for HA were effective in all five populations, cross-validation-predictive ability (PA) ranging from 0.07 to 0.43, by trait and target population, and 0.40–0.52 for days-to-heading. Best linear unbiased predictor (BLUP)-based prediction methods, including GBLUP with either a standard or a recently developed (KGD) relatedness estimation, were marginally superior or equal to ridge regression and random forest computational approaches. PA was principally an outcome of SNP modelling genetic relationships between training and validation sets, which may limit application for long-term genomic selection, due to PA decay. However, simulation using data from the training experiment indicated a twofold increase in genetic gain for HA, when applying a prediction model with moderate PA in a single selection cycle, by combining among-HS family selection, based on phenotype, with within-HS family selection using genomic prediction. |
doi_str_mv | 10.1007/s00122-017-3030-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5814531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979948214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-73446fc27031e56d1ec13a9785a837b09e0b0b167000e5371a72b6c9f6209a9b3</originalsourceid><addsrcrecordid>eNqFUk2L1TAUDaI4z6c_wI0E3LiJ3iRN02wEGcYPGNCFrkPad_vM0CY1aQe69o-bzhuHURBXueGcnHtu7iHkOYfXHEC_yQBcCAZcMwkSGH9AdrySgglRiYdkB1ABU1qJM_Ik5ysAEArkY3ImjKirWqgd-fkl4cF3s79G6lo_-HmlsadHDHH0Hc04YAFjoGM84JCpD9TRcRlmz6Y4LYO7ASdMGIJ3A00rHpPLmc7J-eDDsUjMdMlbtYnO61RK1q4s448FQ1duT8mj3g0Zn92ee_Lt_cXX84_s8vOHT-fvLllXXM9My6qq-05okBxVfeDYcemMbpRrpG7BILTQ8lqXOVFJzZ0Wbd2ZvhZgnGnlnrw96U5LO-Khw1BMDnZKfnRptdF5-ycS_Hd7jNdWNbxSkheBV7cCKRbzebajzx0OgwsYl2wFKNkY1UD9Xyo32lRGSSkK9eVf1Ku4pFB-4oZlqkaUpe4JP7G6FHNO2N_55mC3NNhTGmxJg93SYDe_L-4PfPfi9_oLQZwIuUDhiOle63-q_gIHhMHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979948214</pqid></control><display><type>article</type><title>Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Faville, Marty J. ; Ganesh, Siva ; Cao, Mingshu ; Jahufer, M. Z. Zulfi ; Bilton, Timothy P. ; Easton, H. Sydney ; Ryan, Douglas L. ; Trethewey, Jason A. K. ; Rolston, M. Philip ; Griffiths, Andrew G. ; Moraga, Roger ; Flay, Casey ; Schmidt, Jana ; Tan, Rachel ; Barrett, Brent A.</creator><creatorcontrib>Faville, Marty J. ; Ganesh, Siva ; Cao, Mingshu ; Jahufer, M. Z. Zulfi ; Bilton, Timothy P. ; Easton, H. Sydney ; Ryan, Douglas L. ; Trethewey, Jason A. K. ; Rolston, M. Philip ; Griffiths, Andrew G. ; Moraga, Roger ; Flay, Casey ; Schmidt, Jana ; Tan, Rachel ; Barrett, Brent A.</creatorcontrib><description>Key message
Genomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a composite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection.
Perennial ryegrass (
Lolium perenne
L.) is a key source of nutrition for ruminant livestock in temperate environments worldwide. Higher seasonal and annual yield of herbage dry matter (DMY) is a principal breeding objective but the historical realised rate of genetic gain for DMY is modest. Genomic selection was investigated as a tool to enhance the rate of genetic gain. Genotyping-by-sequencing (GBS) was undertaken in a multi-population (MP) training set of five populations, phenotyped as half-sibling (HS) families in five environments over 2 years for mean herbage accumulation (HA), a measure of DMY potential. GBS using the ApeKI enzyme yielded 1.02 million single-nucleotide polymorphism (SNP) markers from a training set of
n
= 517. MP-based genomic prediction models for HA were effective in all five populations, cross-validation-predictive ability (PA) ranging from 0.07 to 0.43, by trait and target population, and 0.40–0.52 for days-to-heading. Best linear unbiased predictor (BLUP)-based prediction methods, including GBLUP with either a standard or a recently developed (KGD) relatedness estimation, were marginally superior or equal to ridge regression and random forest computational approaches. PA was principally an outcome of SNP modelling genetic relationships between training and validation sets, which may limit application for long-term genomic selection, due to PA decay. However, simulation using data from the training experiment indicated a twofold increase in genetic gain for HA, when applying a prediction model with moderate PA in a single selection cycle, by combining among-HS family selection, based on phenotype, with within-HS family selection using genomic prediction.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-017-3030-1</identifier><identifier>PMID: 29264625</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Breeding ; Computer applications ; Computer simulation ; Data processing ; Dry matter ; dry matter accumulation ; forage ; Gene polymorphism ; genetic improvement ; genetic relationships ; Genomics ; Genotyping ; genotyping by sequencing ; Genotyping Techniques ; Life Sciences ; Linkage Disequilibrium ; Livestock ; Lolium - genetics ; Lolium perenne ; marker-assisted selection ; Models, Genetic ; nutrition ; Original ; Original Article ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant growth ; Polymorphism, Single Nucleotide ; prediction ; Prediction models ; ruminants ; Single-nucleotide polymorphism ; Temperate environments</subject><ispartof>Theoretical and applied genetics, 2018-03, Vol.131 (3), p.703-720</ispartof><rights>The Author(s) 2017</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-73446fc27031e56d1ec13a9785a837b09e0b0b167000e5371a72b6c9f6209a9b3</citedby><cites>FETCH-LOGICAL-c503t-73446fc27031e56d1ec13a9785a837b09e0b0b167000e5371a72b6c9f6209a9b3</cites><orcidid>0000-0002-3129-6540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-017-3030-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-017-3030-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29264625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faville, Marty J.</creatorcontrib><creatorcontrib>Ganesh, Siva</creatorcontrib><creatorcontrib>Cao, Mingshu</creatorcontrib><creatorcontrib>Jahufer, M. Z. Zulfi</creatorcontrib><creatorcontrib>Bilton, Timothy P.</creatorcontrib><creatorcontrib>Easton, H. Sydney</creatorcontrib><creatorcontrib>Ryan, Douglas L.</creatorcontrib><creatorcontrib>Trethewey, Jason A. K.</creatorcontrib><creatorcontrib>Rolston, M. Philip</creatorcontrib><creatorcontrib>Griffiths, Andrew G.</creatorcontrib><creatorcontrib>Moraga, Roger</creatorcontrib><creatorcontrib>Flay, Casey</creatorcontrib><creatorcontrib>Schmidt, Jana</creatorcontrib><creatorcontrib>Tan, Rachel</creatorcontrib><creatorcontrib>Barrett, Brent A.</creatorcontrib><title>Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
Genomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a composite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection.
Perennial ryegrass (
Lolium perenne
L.) is a key source of nutrition for ruminant livestock in temperate environments worldwide. Higher seasonal and annual yield of herbage dry matter (DMY) is a principal breeding objective but the historical realised rate of genetic gain for DMY is modest. Genomic selection was investigated as a tool to enhance the rate of genetic gain. Genotyping-by-sequencing (GBS) was undertaken in a multi-population (MP) training set of five populations, phenotyped as half-sibling (HS) families in five environments over 2 years for mean herbage accumulation (HA), a measure of DMY potential. GBS using the ApeKI enzyme yielded 1.02 million single-nucleotide polymorphism (SNP) markers from a training set of
n
= 517. MP-based genomic prediction models for HA were effective in all five populations, cross-validation-predictive ability (PA) ranging from 0.07 to 0.43, by trait and target population, and 0.40–0.52 for days-to-heading. Best linear unbiased predictor (BLUP)-based prediction methods, including GBLUP with either a standard or a recently developed (KGD) relatedness estimation, were marginally superior or equal to ridge regression and random forest computational approaches. PA was principally an outcome of SNP modelling genetic relationships between training and validation sets, which may limit application for long-term genomic selection, due to PA decay. However, simulation using data from the training experiment indicated a twofold increase in genetic gain for HA, when applying a prediction model with moderate PA in a single selection cycle, by combining among-HS family selection, based on phenotype, with within-HS family selection using genomic prediction.</description><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Dry matter</subject><subject>dry matter accumulation</subject><subject>forage</subject><subject>Gene polymorphism</subject><subject>genetic improvement</subject><subject>genetic relationships</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>genotyping by sequencing</subject><subject>Genotyping Techniques</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Livestock</subject><subject>Lolium - genetics</subject><subject>Lolium perenne</subject><subject>marker-assisted selection</subject><subject>Models, Genetic</subject><subject>nutrition</subject><subject>Original</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant growth</subject><subject>Polymorphism, Single Nucleotide</subject><subject>prediction</subject><subject>Prediction models</subject><subject>ruminants</subject><subject>Single-nucleotide polymorphism</subject><subject>Temperate environments</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFUk2L1TAUDaI4z6c_wI0E3LiJ3iRN02wEGcYPGNCFrkPad_vM0CY1aQe69o-bzhuHURBXueGcnHtu7iHkOYfXHEC_yQBcCAZcMwkSGH9AdrySgglRiYdkB1ABU1qJM_Ik5ysAEArkY3ImjKirWqgd-fkl4cF3s79G6lo_-HmlsadHDHH0Hc04YAFjoGM84JCpD9TRcRlmz6Y4LYO7ASdMGIJ3A00rHpPLmc7J-eDDsUjMdMlbtYnO61RK1q4s448FQ1duT8mj3g0Zn92ee_Lt_cXX84_s8vOHT-fvLllXXM9My6qq-05okBxVfeDYcemMbpRrpG7BILTQ8lqXOVFJzZ0Wbd2ZvhZgnGnlnrw96U5LO-Khw1BMDnZKfnRptdF5-ycS_Hd7jNdWNbxSkheBV7cCKRbzebajzx0OgwsYl2wFKNkY1UD9Xyo32lRGSSkK9eVf1Ku4pFB-4oZlqkaUpe4JP7G6FHNO2N_55mC3NNhTGmxJg93SYDe_L-4PfPfi9_oLQZwIuUDhiOle63-q_gIHhMHM</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Faville, Marty J.</creator><creator>Ganesh, Siva</creator><creator>Cao, Mingshu</creator><creator>Jahufer, M. Z. Zulfi</creator><creator>Bilton, Timothy P.</creator><creator>Easton, H. Sydney</creator><creator>Ryan, Douglas L.</creator><creator>Trethewey, Jason A. K.</creator><creator>Rolston, M. Philip</creator><creator>Griffiths, Andrew G.</creator><creator>Moraga, Roger</creator><creator>Flay, Casey</creator><creator>Schmidt, Jana</creator><creator>Tan, Rachel</creator><creator>Barrett, Brent A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3129-6540</orcidid></search><sort><creationdate>20180301</creationdate><title>Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing</title><author>Faville, Marty J. ; Ganesh, Siva ; Cao, Mingshu ; Jahufer, M. Z. Zulfi ; Bilton, Timothy P. ; Easton, H. Sydney ; Ryan, Douglas L. ; Trethewey, Jason A. K. ; Rolston, M. Philip ; Griffiths, Andrew G. ; Moraga, Roger ; Flay, Casey ; Schmidt, Jana ; Tan, Rachel ; Barrett, Brent A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-73446fc27031e56d1ec13a9785a837b09e0b0b167000e5371a72b6c9f6209a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Dry matter</topic><topic>dry matter accumulation</topic><topic>forage</topic><topic>Gene polymorphism</topic><topic>genetic improvement</topic><topic>genetic relationships</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>genotyping by sequencing</topic><topic>Genotyping Techniques</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Livestock</topic><topic>Lolium - genetics</topic><topic>Lolium perenne</topic><topic>marker-assisted selection</topic><topic>Models, Genetic</topic><topic>nutrition</topic><topic>Original</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant growth</topic><topic>Polymorphism, Single Nucleotide</topic><topic>prediction</topic><topic>Prediction models</topic><topic>ruminants</topic><topic>Single-nucleotide polymorphism</topic><topic>Temperate environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faville, Marty J.</creatorcontrib><creatorcontrib>Ganesh, Siva</creatorcontrib><creatorcontrib>Cao, Mingshu</creatorcontrib><creatorcontrib>Jahufer, M. Z. Zulfi</creatorcontrib><creatorcontrib>Bilton, Timothy P.</creatorcontrib><creatorcontrib>Easton, H. Sydney</creatorcontrib><creatorcontrib>Ryan, Douglas L.</creatorcontrib><creatorcontrib>Trethewey, Jason A. K.</creatorcontrib><creatorcontrib>Rolston, M. Philip</creatorcontrib><creatorcontrib>Griffiths, Andrew G.</creatorcontrib><creatorcontrib>Moraga, Roger</creatorcontrib><creatorcontrib>Flay, Casey</creatorcontrib><creatorcontrib>Schmidt, Jana</creatorcontrib><creatorcontrib>Tan, Rachel</creatorcontrib><creatorcontrib>Barrett, Brent A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faville, Marty J.</au><au>Ganesh, Siva</au><au>Cao, Mingshu</au><au>Jahufer, M. Z. Zulfi</au><au>Bilton, Timothy P.</au><au>Easton, H. Sydney</au><au>Ryan, Douglas L.</au><au>Trethewey, Jason A. K.</au><au>Rolston, M. Philip</au><au>Griffiths, Andrew G.</au><au>Moraga, Roger</au><au>Flay, Casey</au><au>Schmidt, Jana</au><au>Tan, Rachel</au><au>Barrett, Brent A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>131</volume><issue>3</issue><spage>703</spage><epage>720</epage><pages>703-720</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
Genomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a composite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection.
Perennial ryegrass (
Lolium perenne
L.) is a key source of nutrition for ruminant livestock in temperate environments worldwide. Higher seasonal and annual yield of herbage dry matter (DMY) is a principal breeding objective but the historical realised rate of genetic gain for DMY is modest. Genomic selection was investigated as a tool to enhance the rate of genetic gain. Genotyping-by-sequencing (GBS) was undertaken in a multi-population (MP) training set of five populations, phenotyped as half-sibling (HS) families in five environments over 2 years for mean herbage accumulation (HA), a measure of DMY potential. GBS using the ApeKI enzyme yielded 1.02 million single-nucleotide polymorphism (SNP) markers from a training set of
n
= 517. MP-based genomic prediction models for HA were effective in all five populations, cross-validation-predictive ability (PA) ranging from 0.07 to 0.43, by trait and target population, and 0.40–0.52 for days-to-heading. Best linear unbiased predictor (BLUP)-based prediction methods, including GBLUP with either a standard or a recently developed (KGD) relatedness estimation, were marginally superior or equal to ridge regression and random forest computational approaches. PA was principally an outcome of SNP modelling genetic relationships between training and validation sets, which may limit application for long-term genomic selection, due to PA decay. However, simulation using data from the training experiment indicated a twofold increase in genetic gain for HA, when applying a prediction model with moderate PA in a single selection cycle, by combining among-HS family selection, based on phenotype, with within-HS family selection using genomic prediction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29264625</pmid><doi>10.1007/s00122-017-3030-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3129-6540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2018-03, Vol.131 (3), p.703-720 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5814531 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Agriculture Biochemistry Biomedical and Life Sciences Biotechnology Breeding Computer applications Computer simulation Data processing Dry matter dry matter accumulation forage Gene polymorphism genetic improvement genetic relationships Genomics Genotyping genotyping by sequencing Genotyping Techniques Life Sciences Linkage Disequilibrium Livestock Lolium - genetics Lolium perenne marker-assisted selection Models, Genetic nutrition Original Original Article Phenotype Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Plant growth Polymorphism, Single Nucleotide prediction Prediction models ruminants Single-nucleotide polymorphism Temperate environments |
title | Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20ability%20of%20genomic%20selection%20models%20in%20a%20multi-population%20perennial%20ryegrass%20training%20set%20using%20genotyping-by-sequencing&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Faville,%20Marty%20J.&rft.date=2018-03-01&rft.volume=131&rft.issue=3&rft.spage=703&rft.epage=720&rft.pages=703-720&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-017-3030-1&rft_dat=%3Cproquest_pubme%3E1979948214%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979948214&rft_id=info:pmid/29264625&rfr_iscdi=true |