Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is u...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2018-02, Vol.122 (5), p.2734-2746 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2746 |
---|---|
container_issue | 5 |
container_start_page | 2734 |
container_title | Journal of physical chemistry. C |
container_volume | 122 |
creator | Hoffman, Alexander E. J. Vanduyfhuys, Louis Nevjestić, Irena Wieme, Jelle Rogge, Sven M. J. Depauw, Hannes Van Der Voort, Pascal Vrielinck, Henk Van Speybroeck, Veronique |
description | In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition. |
doi_str_mv | 10.1021/acs.jpcc.7b11031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5808359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2003040108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a3</originalsourceid><addsrcrecordid>eNqFUcFuEzEQtRCIlsCdE_KxSN10vPbG2QtSFCVQKVUvlKvldWYTF-96sXeh3PoLiD_kS3CaNIID4mR75r038_wIec1gzCBnF9rE8W1nzFhWjAFnT8gpK3meSVEUT493IU_IixhvAQoOjD8nJ3kpRFnC5JT8WLjB2LXubbuh_RbpJ1uF9PKtdnSZihi6YNue-vqhvXR4ZyuH9Ap77X7d_7wOG91aQ5dBN_jNh8_06nKVFfxs5t7Sm7iT1XTum8q2uKaLuw6DbbBN5ItU7Yb-cdis64LXZvuSPKu1i_jqcI7IzXLxcf4hW12_v5zPVpkueN5nUk4MANa4M7lGDTyXxvA1r1lVMy4F1gax5DWgLrkEzadyIgyYigtuSs1H5N1etxuqBtcm7RS0U8lto8N35bVVf3dau1Ub_1UVU5jyokwCZweB4L8MGHvV2GjQOd2iH6LKGZuUAgoh_w8F4CCAJeERgT3UBB9jwPq4EQO1C12l0NUudHUIPVHe_OnkSHhMOQHO94AHqh9C-u_4b73f4_-8Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003040108</pqid></control><display><type>article</type><title>Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach</title><source>ACS Publications</source><creator>Hoffman, Alexander E. J. ; Vanduyfhuys, Louis ; Nevjestić, Irena ; Wieme, Jelle ; Rogge, Sven M. J. ; Depauw, Hannes ; Van Der Voort, Pascal ; Vrielinck, Henk ; Van Speybroeck, Veronique</creator><creatorcontrib>Hoffman, Alexander E. J. ; Vanduyfhuys, Louis ; Nevjestić, Irena ; Wieme, Jelle ; Rogge, Sven M. J. ; Depauw, Hannes ; Van Der Voort, Pascal ; Vrielinck, Henk ; Van Speybroeck, Veronique</creatorcontrib><description>In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b11031</identifier><identifier>PMID: 29449906</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>aluminum oxide ; breathing ; coordination polymers ; density functional theory ; energy ; molecular dynamics ; phase transition ; Raman spectroscopy ; simulation models</subject><ispartof>Journal of physical chemistry. C, 2018-02, Vol.122 (5), p.2734-2746</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a3</citedby><cites>FETCH-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a3</cites><orcidid>0000-0002-4874-0943 ; 0000-0003-4493-5708 ; 0000-0003-2206-178X ; 0000-0002-1529-4705 ; 0000-0002-4841-2608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.7b11031$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.7b11031$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29449906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffman, Alexander E. J.</creatorcontrib><creatorcontrib>Vanduyfhuys, Louis</creatorcontrib><creatorcontrib>Nevjestić, Irena</creatorcontrib><creatorcontrib>Wieme, Jelle</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Depauw, Hannes</creatorcontrib><creatorcontrib>Van Der Voort, Pascal</creatorcontrib><creatorcontrib>Vrielinck, Henk</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><title>Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.</description><subject>aluminum oxide</subject><subject>breathing</subject><subject>coordination polymers</subject><subject>density functional theory</subject><subject>energy</subject><subject>molecular dynamics</subject><subject>phase transition</subject><subject>Raman spectroscopy</subject><subject>simulation models</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUcFuEzEQtRCIlsCdE_KxSN10vPbG2QtSFCVQKVUvlKvldWYTF-96sXeh3PoLiD_kS3CaNIID4mR75r038_wIec1gzCBnF9rE8W1nzFhWjAFnT8gpK3meSVEUT493IU_IixhvAQoOjD8nJ3kpRFnC5JT8WLjB2LXubbuh_RbpJ1uF9PKtdnSZihi6YNue-vqhvXR4ZyuH9Ap77X7d_7wOG91aQ5dBN_jNh8_06nKVFfxs5t7Sm7iT1XTum8q2uKaLuw6DbbBN5ItU7Yb-cdis64LXZvuSPKu1i_jqcI7IzXLxcf4hW12_v5zPVpkueN5nUk4MANa4M7lGDTyXxvA1r1lVMy4F1gax5DWgLrkEzadyIgyYigtuSs1H5N1etxuqBtcm7RS0U8lto8N35bVVf3dau1Ub_1UVU5jyokwCZweB4L8MGHvV2GjQOd2iH6LKGZuUAgoh_w8F4CCAJeERgT3UBB9jwPq4EQO1C12l0NUudHUIPVHe_OnkSHhMOQHO94AHqh9C-u_4b73f4_-8Og</recordid><startdate>20180208</startdate><enddate>20180208</enddate><creator>Hoffman, Alexander E. J.</creator><creator>Vanduyfhuys, Louis</creator><creator>Nevjestić, Irena</creator><creator>Wieme, Jelle</creator><creator>Rogge, Sven M. J.</creator><creator>Depauw, Hannes</creator><creator>Van Der Voort, Pascal</creator><creator>Vrielinck, Henk</creator><creator>Van Speybroeck, Veronique</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4874-0943</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0002-1529-4705</orcidid><orcidid>https://orcid.org/0000-0002-4841-2608</orcidid></search><sort><creationdate>20180208</creationdate><title>Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach</title><author>Hoffman, Alexander E. J. ; Vanduyfhuys, Louis ; Nevjestić, Irena ; Wieme, Jelle ; Rogge, Sven M. J. ; Depauw, Hannes ; Van Der Voort, Pascal ; Vrielinck, Henk ; Van Speybroeck, Veronique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aluminum oxide</topic><topic>breathing</topic><topic>coordination polymers</topic><topic>density functional theory</topic><topic>energy</topic><topic>molecular dynamics</topic><topic>phase transition</topic><topic>Raman spectroscopy</topic><topic>simulation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffman, Alexander E. J.</creatorcontrib><creatorcontrib>Vanduyfhuys, Louis</creatorcontrib><creatorcontrib>Nevjestić, Irena</creatorcontrib><creatorcontrib>Wieme, Jelle</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Depauw, Hannes</creatorcontrib><creatorcontrib>Van Der Voort, Pascal</creatorcontrib><creatorcontrib>Vrielinck, Henk</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffman, Alexander E. J.</au><au>Vanduyfhuys, Louis</au><au>Nevjestić, Irena</au><au>Wieme, Jelle</au><au>Rogge, Sven M. J.</au><au>Depauw, Hannes</au><au>Van Der Voort, Pascal</au><au>Vrielinck, Henk</au><au>Van Speybroeck, Veronique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-02-08</date><risdate>2018</risdate><volume>122</volume><issue>5</issue><spage>2734</spage><epage>2746</epage><pages>2734-2746</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29449906</pmid><doi>10.1021/acs.jpcc.7b11031</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4874-0943</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0002-1529-4705</orcidid><orcidid>https://orcid.org/0000-0002-4841-2608</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2018-02, Vol.122 (5), p.2734-2746 |
issn | 1932-7447 1932-7455 1932-7455 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5808359 |
source | ACS Publications |
subjects | aluminum oxide breathing coordination polymers density functional theory energy molecular dynamics phase transition Raman spectroscopy simulation models |
title | Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Vibrational%20Fingerprint%20of%20the%20Flexible%20Metal%E2%80%93Organic%20Framework%20MIL-53(Al)%20Using%20a%20Combined%20Experimental/Computational%20Approach&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hoffman,%20Alexander%20E.%20J.&rft.date=2018-02-08&rft.volume=122&rft.issue=5&rft.spage=2734&rft.epage=2746&rft.pages=2734-2746&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b11031&rft_dat=%3Cproquest_pubme%3E2003040108%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003040108&rft_id=info:pmid/29449906&rfr_iscdi=true |