Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach

In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)­stable phases of the flexible metal–organic framework MIL-53­(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-02, Vol.122 (5), p.2734-2746
Hauptverfasser: Hoffman, Alexander E. J., Vanduyfhuys, Louis, Nevjestić, Irena, Wieme, Jelle, Rogge, Sven M. J., Depauw, Hannes, Van Der Voort, Pascal, Vrielinck, Henk, Van Speybroeck, Veronique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2746
container_issue 5
container_start_page 2734
container_title Journal of physical chemistry. C
container_volume 122
creator Hoffman, Alexander E. J.
Vanduyfhuys, Louis
Nevjestić, Irena
Wieme, Jelle
Rogge, Sven M. J.
Depauw, Hannes
Van Der Voort, Pascal
Vrielinck, Henk
Van Speybroeck, Veronique
description In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)­stable phases of the flexible metal–organic framework MIL-53­(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53­(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.
doi_str_mv 10.1021/acs.jpcc.7b11031
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5808359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2003040108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a3</originalsourceid><addsrcrecordid>eNqFUcFuEzEQtRCIlsCdE_KxSN10vPbG2QtSFCVQKVUvlKvldWYTF-96sXeh3PoLiD_kS3CaNIID4mR75r038_wIec1gzCBnF9rE8W1nzFhWjAFnT8gpK3meSVEUT493IU_IixhvAQoOjD8nJ3kpRFnC5JT8WLjB2LXubbuh_RbpJ1uF9PKtdnSZihi6YNue-vqhvXR4ZyuH9Ap77X7d_7wOG91aQ5dBN_jNh8_06nKVFfxs5t7Sm7iT1XTum8q2uKaLuw6DbbBN5ItU7Yb-cdis64LXZvuSPKu1i_jqcI7IzXLxcf4hW12_v5zPVpkueN5nUk4MANa4M7lGDTyXxvA1r1lVMy4F1gax5DWgLrkEzadyIgyYigtuSs1H5N1etxuqBtcm7RS0U8lto8N35bVVf3dau1Ub_1UVU5jyokwCZweB4L8MGHvV2GjQOd2iH6LKGZuUAgoh_w8F4CCAJeERgT3UBB9jwPq4EQO1C12l0NUudHUIPVHe_OnkSHhMOQHO94AHqh9C-u_4b73f4_-8Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003040108</pqid></control><display><type>article</type><title>Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach</title><source>ACS Publications</source><creator>Hoffman, Alexander E. J. ; Vanduyfhuys, Louis ; Nevjestić, Irena ; Wieme, Jelle ; Rogge, Sven M. J. ; Depauw, Hannes ; Van Der Voort, Pascal ; Vrielinck, Henk ; Van Speybroeck, Veronique</creator><creatorcontrib>Hoffman, Alexander E. J. ; Vanduyfhuys, Louis ; Nevjestić, Irena ; Wieme, Jelle ; Rogge, Sven M. J. ; Depauw, Hannes ; Van Der Voort, Pascal ; Vrielinck, Henk ; Van Speybroeck, Veronique</creatorcontrib><description>In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)­stable phases of the flexible metal–organic framework MIL-53­(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53­(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b11031</identifier><identifier>PMID: 29449906</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>aluminum oxide ; breathing ; coordination polymers ; density functional theory ; energy ; molecular dynamics ; phase transition ; Raman spectroscopy ; simulation models</subject><ispartof>Journal of physical chemistry. C, 2018-02, Vol.122 (5), p.2734-2746</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a3</citedby><cites>FETCH-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a3</cites><orcidid>0000-0002-4874-0943 ; 0000-0003-4493-5708 ; 0000-0003-2206-178X ; 0000-0002-1529-4705 ; 0000-0002-4841-2608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.7b11031$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.7b11031$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29449906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffman, Alexander E. J.</creatorcontrib><creatorcontrib>Vanduyfhuys, Louis</creatorcontrib><creatorcontrib>Nevjestić, Irena</creatorcontrib><creatorcontrib>Wieme, Jelle</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Depauw, Hannes</creatorcontrib><creatorcontrib>Van Der Voort, Pascal</creatorcontrib><creatorcontrib>Vrielinck, Henk</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><title>Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)­stable phases of the flexible metal–organic framework MIL-53­(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53­(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.</description><subject>aluminum oxide</subject><subject>breathing</subject><subject>coordination polymers</subject><subject>density functional theory</subject><subject>energy</subject><subject>molecular dynamics</subject><subject>phase transition</subject><subject>Raman spectroscopy</subject><subject>simulation models</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUcFuEzEQtRCIlsCdE_KxSN10vPbG2QtSFCVQKVUvlKvldWYTF-96sXeh3PoLiD_kS3CaNIID4mR75r038_wIec1gzCBnF9rE8W1nzFhWjAFnT8gpK3meSVEUT493IU_IixhvAQoOjD8nJ3kpRFnC5JT8WLjB2LXubbuh_RbpJ1uF9PKtdnSZihi6YNue-vqhvXR4ZyuH9Ap77X7d_7wOG91aQ5dBN_jNh8_06nKVFfxs5t7Sm7iT1XTum8q2uKaLuw6DbbBN5ItU7Yb-cdis64LXZvuSPKu1i_jqcI7IzXLxcf4hW12_v5zPVpkueN5nUk4MANa4M7lGDTyXxvA1r1lVMy4F1gax5DWgLrkEzadyIgyYigtuSs1H5N1etxuqBtcm7RS0U8lto8N35bVVf3dau1Ub_1UVU5jyokwCZweB4L8MGHvV2GjQOd2iH6LKGZuUAgoh_w8F4CCAJeERgT3UBB9jwPq4EQO1C12l0NUudHUIPVHe_OnkSHhMOQHO94AHqh9C-u_4b73f4_-8Og</recordid><startdate>20180208</startdate><enddate>20180208</enddate><creator>Hoffman, Alexander E. J.</creator><creator>Vanduyfhuys, Louis</creator><creator>Nevjestić, Irena</creator><creator>Wieme, Jelle</creator><creator>Rogge, Sven M. J.</creator><creator>Depauw, Hannes</creator><creator>Van Der Voort, Pascal</creator><creator>Vrielinck, Henk</creator><creator>Van Speybroeck, Veronique</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4874-0943</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0002-1529-4705</orcidid><orcidid>https://orcid.org/0000-0002-4841-2608</orcidid></search><sort><creationdate>20180208</creationdate><title>Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach</title><author>Hoffman, Alexander E. J. ; Vanduyfhuys, Louis ; Nevjestić, Irena ; Wieme, Jelle ; Rogge, Sven M. J. ; Depauw, Hannes ; Van Der Voort, Pascal ; Vrielinck, Henk ; Van Speybroeck, Veronique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-776c00efe1932dea0327cc3d3f1bf1374efcee93f0ea9370a38764c0cb343c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aluminum oxide</topic><topic>breathing</topic><topic>coordination polymers</topic><topic>density functional theory</topic><topic>energy</topic><topic>molecular dynamics</topic><topic>phase transition</topic><topic>Raman spectroscopy</topic><topic>simulation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffman, Alexander E. J.</creatorcontrib><creatorcontrib>Vanduyfhuys, Louis</creatorcontrib><creatorcontrib>Nevjestić, Irena</creatorcontrib><creatorcontrib>Wieme, Jelle</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Depauw, Hannes</creatorcontrib><creatorcontrib>Van Der Voort, Pascal</creatorcontrib><creatorcontrib>Vrielinck, Henk</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffman, Alexander E. J.</au><au>Vanduyfhuys, Louis</au><au>Nevjestić, Irena</au><au>Wieme, Jelle</au><au>Rogge, Sven M. J.</au><au>Depauw, Hannes</au><au>Van Der Voort, Pascal</au><au>Vrielinck, Henk</au><au>Van Speybroeck, Veronique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-02-08</date><risdate>2018</risdate><volume>122</volume><issue>5</issue><spage>2734</spage><epage>2746</epage><pages>2734-2746</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)­stable phases of the flexible metal–organic framework MIL-53­(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53­(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29449906</pmid><doi>10.1021/acs.jpcc.7b11031</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4874-0943</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0002-1529-4705</orcidid><orcidid>https://orcid.org/0000-0002-4841-2608</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-02, Vol.122 (5), p.2734-2746
issn 1932-7447
1932-7455
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5808359
source ACS Publications
subjects aluminum oxide
breathing
coordination polymers
density functional theory
energy
molecular dynamics
phase transition
Raman spectroscopy
simulation models
title Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Vibrational%20Fingerprint%20of%20the%20Flexible%20Metal%E2%80%93Organic%20Framework%20MIL-53(Al)%20Using%20a%20Combined%20Experimental/Computational%20Approach&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hoffman,%20Alexander%20E.%20J.&rft.date=2018-02-08&rft.volume=122&rft.issue=5&rft.spage=2734&rft.epage=2746&rft.pages=2734-2746&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b11031&rft_dat=%3Cproquest_pubme%3E2003040108%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003040108&rft_id=info:pmid/29449906&rfr_iscdi=true