Preliminary study of automatic gastric cancer risk classification from photofluorography

To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study. We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio, ( ) antibody, eradication history and interview sheets. We p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of gastrointestinal oncology 2018-02, Vol.10 (2), p.62-70
Hauptverfasser: Togo, Ren, Ishihara, Kenta, Mabe, Katsuhiro, Oizumi, Harufumi, Ogawa, Takahiro, Kato, Mototsugu, Sakamoto, Naoya, Nakajima, Shigemi, Asaka, Masahiro, Haseyama, Miki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 2
container_start_page 62
container_title World journal of gastrointestinal oncology
container_volume 10
creator Togo, Ren
Ishihara, Kenta
Mabe, Katsuhiro
Oizumi, Harufumi
Ogawa, Takahiro
Kato, Mototsugu
Sakamoto, Naoya
Nakajima, Shigemi
Asaka, Masahiro
Haseyama, Miki
description To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study. We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio, ( ) antibody, eradication history and interview sheets. We performed two-stage classification with our system. In the first stage, infection status classification was performed, and -infected subjects were automatically detected. In the second stage, we performed atrophic level classification to validate the effectiveness of our system. Sensitivity, specificity and Youden index (YI) of infection status classification were 0.884, 0.895 and 0.779, respectively, in the first stage. In the second stage, sensitivity, specificity and YI of atrophic level classification for -infected subjects were 0.777, 0.824 and 0.601, respectively. Although further improvements of the system are needed, experimental results indicated the effectiveness of machine learning techniques for estimation of gastric cancer risk.
doi_str_mv 10.4251/wjgo.v10.i2.62
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007420663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-b5efa238601557b2a0c86c4a614f5480083411ea8f9a3674422eb136523908ea3</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaKoVK8eZY9eWifZJJu9CCJ-gaAHBW9hmiZtdHdTk91K_70pVdG5zAzz5s3HI-SEwoQzQc8_3-ZhssqZZxPJdsghrbkaCwZ89098QI5TeoNsnFdAYZ8csJrLqqbVIXl9irbxre8wrovUD7N1EVyBQx9a7L0p5pj6mL3BzthYRJ_eC9NgSt55kxGhK1wMbbFchD64ZggxzCMuF-sjsuewSfb424_Iy83189Xd-OHx9v7q8mFsBEA_ngrrkJVKAhWimjIEo6ThKCl3gisAVXJKLSpXYykrzhmzU1pKwcoalMVyRC62vMth2tqZsV0fsdHL6Nt8kg7o9f9K5xd6HlZaKKiUopng7Jsgho_Bpl63PhnbNNjZMCTNACrOQMoyQydbqIkhpWjd7xgKeqOI3iiisyLaMy1Zbjj9u9wv_Of_5RdFwIpk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007420663</pqid></control><display><type>article</type><title>Preliminary study of automatic gastric cancer risk classification from photofluorography</title><source>Baishideng "World Journal of" online journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Togo, Ren ; Ishihara, Kenta ; Mabe, Katsuhiro ; Oizumi, Harufumi ; Ogawa, Takahiro ; Kato, Mototsugu ; Sakamoto, Naoya ; Nakajima, Shigemi ; Asaka, Masahiro ; Haseyama, Miki</creator><creatorcontrib>Togo, Ren ; Ishihara, Kenta ; Mabe, Katsuhiro ; Oizumi, Harufumi ; Ogawa, Takahiro ; Kato, Mototsugu ; Sakamoto, Naoya ; Nakajima, Shigemi ; Asaka, Masahiro ; Haseyama, Miki</creatorcontrib><description>To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study. We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio, ( ) antibody, eradication history and interview sheets. We performed two-stage classification with our system. In the first stage, infection status classification was performed, and -infected subjects were automatically detected. In the second stage, we performed atrophic level classification to validate the effectiveness of our system. Sensitivity, specificity and Youden index (YI) of infection status classification were 0.884, 0.895 and 0.779, respectively, in the first stage. In the second stage, sensitivity, specificity and YI of atrophic level classification for -infected subjects were 0.777, 0.824 and 0.601, respectively. Although further improvements of the system are needed, experimental results indicated the effectiveness of machine learning techniques for estimation of gastric cancer risk.</description><identifier>ISSN: 1948-5204</identifier><identifier>EISSN: 1948-5204</identifier><identifier>DOI: 10.4251/wjgo.v10.i2.62</identifier><identifier>PMID: 29467917</identifier><language>eng</language><publisher>China: Baishideng Publishing Group Inc</publisher><subject>Retrospective Study</subject><ispartof>World journal of gastrointestinal oncology, 2018-02, Vol.10 (2), p.62-70</ispartof><rights>The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved. 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-b5efa238601557b2a0c86c4a614f5480083411ea8f9a3674422eb136523908ea3</citedby><cites>FETCH-LOGICAL-c500t-b5efa238601557b2a0c86c4a614f5480083411ea8f9a3674422eb136523908ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807881/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807881/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29467917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Togo, Ren</creatorcontrib><creatorcontrib>Ishihara, Kenta</creatorcontrib><creatorcontrib>Mabe, Katsuhiro</creatorcontrib><creatorcontrib>Oizumi, Harufumi</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Kato, Mototsugu</creatorcontrib><creatorcontrib>Sakamoto, Naoya</creatorcontrib><creatorcontrib>Nakajima, Shigemi</creatorcontrib><creatorcontrib>Asaka, Masahiro</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><title>Preliminary study of automatic gastric cancer risk classification from photofluorography</title><title>World journal of gastrointestinal oncology</title><addtitle>World J Gastrointest Oncol</addtitle><description>To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study. We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio, ( ) antibody, eradication history and interview sheets. We performed two-stage classification with our system. In the first stage, infection status classification was performed, and -infected subjects were automatically detected. In the second stage, we performed atrophic level classification to validate the effectiveness of our system. Sensitivity, specificity and Youden index (YI) of infection status classification were 0.884, 0.895 and 0.779, respectively, in the first stage. In the second stage, sensitivity, specificity and YI of atrophic level classification for -infected subjects were 0.777, 0.824 and 0.601, respectively. Although further improvements of the system are needed, experimental results indicated the effectiveness of machine learning techniques for estimation of gastric cancer risk.</description><subject>Retrospective Study</subject><issn>1948-5204</issn><issn>1948-5204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LAzEQDaKoVK8eZY9eWifZJJu9CCJ-gaAHBW9hmiZtdHdTk91K_70pVdG5zAzz5s3HI-SEwoQzQc8_3-ZhssqZZxPJdsghrbkaCwZ89098QI5TeoNsnFdAYZ8csJrLqqbVIXl9irbxre8wrovUD7N1EVyBQx9a7L0p5pj6mL3BzthYRJ_eC9NgSt55kxGhK1wMbbFchD64ZggxzCMuF-sjsuewSfb424_Iy83189Xd-OHx9v7q8mFsBEA_ngrrkJVKAhWimjIEo6ThKCl3gisAVXJKLSpXYykrzhmzU1pKwcoalMVyRC62vMth2tqZsV0fsdHL6Nt8kg7o9f9K5xd6HlZaKKiUopng7Jsgho_Bpl63PhnbNNjZMCTNACrOQMoyQydbqIkhpWjd7xgKeqOI3iiisyLaMy1Zbjj9u9wv_Of_5RdFwIpk</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Togo, Ren</creator><creator>Ishihara, Kenta</creator><creator>Mabe, Katsuhiro</creator><creator>Oizumi, Harufumi</creator><creator>Ogawa, Takahiro</creator><creator>Kato, Mototsugu</creator><creator>Sakamoto, Naoya</creator><creator>Nakajima, Shigemi</creator><creator>Asaka, Masahiro</creator><creator>Haseyama, Miki</creator><general>Baishideng Publishing Group Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180215</creationdate><title>Preliminary study of automatic gastric cancer risk classification from photofluorography</title><author>Togo, Ren ; Ishihara, Kenta ; Mabe, Katsuhiro ; Oizumi, Harufumi ; Ogawa, Takahiro ; Kato, Mototsugu ; Sakamoto, Naoya ; Nakajima, Shigemi ; Asaka, Masahiro ; Haseyama, Miki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-b5efa238601557b2a0c86c4a614f5480083411ea8f9a3674422eb136523908ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Retrospective Study</topic><toplevel>online_resources</toplevel><creatorcontrib>Togo, Ren</creatorcontrib><creatorcontrib>Ishihara, Kenta</creatorcontrib><creatorcontrib>Mabe, Katsuhiro</creatorcontrib><creatorcontrib>Oizumi, Harufumi</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Kato, Mototsugu</creatorcontrib><creatorcontrib>Sakamoto, Naoya</creatorcontrib><creatorcontrib>Nakajima, Shigemi</creatorcontrib><creatorcontrib>Asaka, Masahiro</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>World journal of gastrointestinal oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Togo, Ren</au><au>Ishihara, Kenta</au><au>Mabe, Katsuhiro</au><au>Oizumi, Harufumi</au><au>Ogawa, Takahiro</au><au>Kato, Mototsugu</au><au>Sakamoto, Naoya</au><au>Nakajima, Shigemi</au><au>Asaka, Masahiro</au><au>Haseyama, Miki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preliminary study of automatic gastric cancer risk classification from photofluorography</atitle><jtitle>World journal of gastrointestinal oncology</jtitle><addtitle>World J Gastrointest Oncol</addtitle><date>2018-02-15</date><risdate>2018</risdate><volume>10</volume><issue>2</issue><spage>62</spage><epage>70</epage><pages>62-70</pages><issn>1948-5204</issn><eissn>1948-5204</eissn><abstract>To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study. We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio, ( ) antibody, eradication history and interview sheets. We performed two-stage classification with our system. In the first stage, infection status classification was performed, and -infected subjects were automatically detected. In the second stage, we performed atrophic level classification to validate the effectiveness of our system. Sensitivity, specificity and Youden index (YI) of infection status classification were 0.884, 0.895 and 0.779, respectively, in the first stage. In the second stage, sensitivity, specificity and YI of atrophic level classification for -infected subjects were 0.777, 0.824 and 0.601, respectively. Although further improvements of the system are needed, experimental results indicated the effectiveness of machine learning techniques for estimation of gastric cancer risk.</abstract><cop>China</cop><pub>Baishideng Publishing Group Inc</pub><pmid>29467917</pmid><doi>10.4251/wjgo.v10.i2.62</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-5204
ispartof World journal of gastrointestinal oncology, 2018-02, Vol.10 (2), p.62-70
issn 1948-5204
1948-5204
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807881
source Baishideng "World Journal of" online journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Retrospective Study
title Preliminary study of automatic gastric cancer risk classification from photofluorography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preliminary%20study%20of%20automatic%20gastric%20cancer%20risk%20classification%20from%20photofluorography&rft.jtitle=World%20journal%20of%20gastrointestinal%20oncology&rft.au=Togo,%20Ren&rft.date=2018-02-15&rft.volume=10&rft.issue=2&rft.spage=62&rft.epage=70&rft.pages=62-70&rft.issn=1948-5204&rft.eissn=1948-5204&rft_id=info:doi/10.4251/wjgo.v10.i2.62&rft_dat=%3Cproquest_pubme%3E2007420663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007420663&rft_id=info:pmid/29467917&rfr_iscdi=true