Preliminary study of automatic gastric cancer risk classification from photofluorography
To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study. We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio, ( ) antibody, eradication history and interview sheets. We p...
Gespeichert in:
Veröffentlicht in: | World journal of gastrointestinal oncology 2018-02, Vol.10 (2), p.62-70 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 2 |
container_start_page | 62 |
container_title | World journal of gastrointestinal oncology |
container_volume | 10 |
creator | Togo, Ren Ishihara, Kenta Mabe, Katsuhiro Oizumi, Harufumi Ogawa, Takahiro Kato, Mototsugu Sakamoto, Naoya Nakajima, Shigemi Asaka, Masahiro Haseyama, Miki |
description | To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study.
We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio,
(
) antibody,
eradication history and interview sheets. We performed two-stage classification with our system. In the first stage,
infection status classification was performed, and
-infected subjects were automatically detected. In the second stage, we performed atrophic level classification to validate the effectiveness of our system.
Sensitivity, specificity and Youden index (YI) of
infection status classification were 0.884, 0.895 and 0.779, respectively, in the first stage. In the second stage, sensitivity, specificity and YI of atrophic level classification for
-infected subjects were 0.777, 0.824 and 0.601, respectively.
Although further improvements of the system are needed, experimental results indicated the effectiveness of machine learning techniques for estimation of gastric cancer risk. |
doi_str_mv | 10.4251/wjgo.v10.i2.62 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007420663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-b5efa238601557b2a0c86c4a614f5480083411ea8f9a3674422eb136523908ea3</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaKoVK8eZY9eWifZJJu9CCJ-gaAHBW9hmiZtdHdTk91K_70pVdG5zAzz5s3HI-SEwoQzQc8_3-ZhssqZZxPJdsghrbkaCwZ89098QI5TeoNsnFdAYZ8csJrLqqbVIXl9irbxre8wrovUD7N1EVyBQx9a7L0p5pj6mL3BzthYRJ_eC9NgSt55kxGhK1wMbbFchD64ZggxzCMuF-sjsuewSfb424_Iy83189Xd-OHx9v7q8mFsBEA_ngrrkJVKAhWimjIEo6ThKCl3gisAVXJKLSpXYykrzhmzU1pKwcoalMVyRC62vMth2tqZsV0fsdHL6Nt8kg7o9f9K5xd6HlZaKKiUopng7Jsgho_Bpl63PhnbNNjZMCTNACrOQMoyQydbqIkhpWjd7xgKeqOI3iiisyLaMy1Zbjj9u9wv_Of_5RdFwIpk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007420663</pqid></control><display><type>article</type><title>Preliminary study of automatic gastric cancer risk classification from photofluorography</title><source>Baishideng "World Journal of" online journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Togo, Ren ; Ishihara, Kenta ; Mabe, Katsuhiro ; Oizumi, Harufumi ; Ogawa, Takahiro ; Kato, Mototsugu ; Sakamoto, Naoya ; Nakajima, Shigemi ; Asaka, Masahiro ; Haseyama, Miki</creator><creatorcontrib>Togo, Ren ; Ishihara, Kenta ; Mabe, Katsuhiro ; Oizumi, Harufumi ; Ogawa, Takahiro ; Kato, Mototsugu ; Sakamoto, Naoya ; Nakajima, Shigemi ; Asaka, Masahiro ; Haseyama, Miki</creatorcontrib><description>To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study.
We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio,
(
) antibody,
eradication history and interview sheets. We performed two-stage classification with our system. In the first stage,
infection status classification was performed, and
-infected subjects were automatically detected. In the second stage, we performed atrophic level classification to validate the effectiveness of our system.
Sensitivity, specificity and Youden index (YI) of
infection status classification were 0.884, 0.895 and 0.779, respectively, in the first stage. In the second stage, sensitivity, specificity and YI of atrophic level classification for
-infected subjects were 0.777, 0.824 and 0.601, respectively.
Although further improvements of the system are needed, experimental results indicated the effectiveness of machine learning techniques for estimation of gastric cancer risk.</description><identifier>ISSN: 1948-5204</identifier><identifier>EISSN: 1948-5204</identifier><identifier>DOI: 10.4251/wjgo.v10.i2.62</identifier><identifier>PMID: 29467917</identifier><language>eng</language><publisher>China: Baishideng Publishing Group Inc</publisher><subject>Retrospective Study</subject><ispartof>World journal of gastrointestinal oncology, 2018-02, Vol.10 (2), p.62-70</ispartof><rights>The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved. 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-b5efa238601557b2a0c86c4a614f5480083411ea8f9a3674422eb136523908ea3</citedby><cites>FETCH-LOGICAL-c500t-b5efa238601557b2a0c86c4a614f5480083411ea8f9a3674422eb136523908ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807881/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807881/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29467917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Togo, Ren</creatorcontrib><creatorcontrib>Ishihara, Kenta</creatorcontrib><creatorcontrib>Mabe, Katsuhiro</creatorcontrib><creatorcontrib>Oizumi, Harufumi</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Kato, Mototsugu</creatorcontrib><creatorcontrib>Sakamoto, Naoya</creatorcontrib><creatorcontrib>Nakajima, Shigemi</creatorcontrib><creatorcontrib>Asaka, Masahiro</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><title>Preliminary study of automatic gastric cancer risk classification from photofluorography</title><title>World journal of gastrointestinal oncology</title><addtitle>World J Gastrointest Oncol</addtitle><description>To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study.
We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio,
(
) antibody,
eradication history and interview sheets. We performed two-stage classification with our system. In the first stage,
infection status classification was performed, and
-infected subjects were automatically detected. In the second stage, we performed atrophic level classification to validate the effectiveness of our system.
Sensitivity, specificity and Youden index (YI) of
infection status classification were 0.884, 0.895 and 0.779, respectively, in the first stage. In the second stage, sensitivity, specificity and YI of atrophic level classification for
-infected subjects were 0.777, 0.824 and 0.601, respectively.
Although further improvements of the system are needed, experimental results indicated the effectiveness of machine learning techniques for estimation of gastric cancer risk.</description><subject>Retrospective Study</subject><issn>1948-5204</issn><issn>1948-5204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LAzEQDaKoVK8eZY9eWifZJJu9CCJ-gaAHBW9hmiZtdHdTk91K_70pVdG5zAzz5s3HI-SEwoQzQc8_3-ZhssqZZxPJdsghrbkaCwZ89098QI5TeoNsnFdAYZ8csJrLqqbVIXl9irbxre8wrovUD7N1EVyBQx9a7L0p5pj6mL3BzthYRJ_eC9NgSt55kxGhK1wMbbFchD64ZggxzCMuF-sjsuewSfb424_Iy83189Xd-OHx9v7q8mFsBEA_ngrrkJVKAhWimjIEo6ThKCl3gisAVXJKLSpXYykrzhmzU1pKwcoalMVyRC62vMth2tqZsV0fsdHL6Nt8kg7o9f9K5xd6HlZaKKiUopng7Jsgho_Bpl63PhnbNNjZMCTNACrOQMoyQydbqIkhpWjd7xgKeqOI3iiisyLaMy1Zbjj9u9wv_Of_5RdFwIpk</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Togo, Ren</creator><creator>Ishihara, Kenta</creator><creator>Mabe, Katsuhiro</creator><creator>Oizumi, Harufumi</creator><creator>Ogawa, Takahiro</creator><creator>Kato, Mototsugu</creator><creator>Sakamoto, Naoya</creator><creator>Nakajima, Shigemi</creator><creator>Asaka, Masahiro</creator><creator>Haseyama, Miki</creator><general>Baishideng Publishing Group Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180215</creationdate><title>Preliminary study of automatic gastric cancer risk classification from photofluorography</title><author>Togo, Ren ; Ishihara, Kenta ; Mabe, Katsuhiro ; Oizumi, Harufumi ; Ogawa, Takahiro ; Kato, Mototsugu ; Sakamoto, Naoya ; Nakajima, Shigemi ; Asaka, Masahiro ; Haseyama, Miki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-b5efa238601557b2a0c86c4a614f5480083411ea8f9a3674422eb136523908ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Retrospective Study</topic><toplevel>online_resources</toplevel><creatorcontrib>Togo, Ren</creatorcontrib><creatorcontrib>Ishihara, Kenta</creatorcontrib><creatorcontrib>Mabe, Katsuhiro</creatorcontrib><creatorcontrib>Oizumi, Harufumi</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Kato, Mototsugu</creatorcontrib><creatorcontrib>Sakamoto, Naoya</creatorcontrib><creatorcontrib>Nakajima, Shigemi</creatorcontrib><creatorcontrib>Asaka, Masahiro</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>World journal of gastrointestinal oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Togo, Ren</au><au>Ishihara, Kenta</au><au>Mabe, Katsuhiro</au><au>Oizumi, Harufumi</au><au>Ogawa, Takahiro</au><au>Kato, Mototsugu</au><au>Sakamoto, Naoya</au><au>Nakajima, Shigemi</au><au>Asaka, Masahiro</au><au>Haseyama, Miki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preliminary study of automatic gastric cancer risk classification from photofluorography</atitle><jtitle>World journal of gastrointestinal oncology</jtitle><addtitle>World J Gastrointest Oncol</addtitle><date>2018-02-15</date><risdate>2018</risdate><volume>10</volume><issue>2</issue><spage>62</spage><epage>70</epage><pages>62-70</pages><issn>1948-5204</issn><eissn>1948-5204</eissn><abstract>To perform automatic gastric cancer risk classification using photofluorography for realizing effective mass screening as a preliminary study.
We used data for 2100 subjects including X-ray images, pepsinogen I and II levels, PGI/PGII ratio,
(
) antibody,
eradication history and interview sheets. We performed two-stage classification with our system. In the first stage,
infection status classification was performed, and
-infected subjects were automatically detected. In the second stage, we performed atrophic level classification to validate the effectiveness of our system.
Sensitivity, specificity and Youden index (YI) of
infection status classification were 0.884, 0.895 and 0.779, respectively, in the first stage. In the second stage, sensitivity, specificity and YI of atrophic level classification for
-infected subjects were 0.777, 0.824 and 0.601, respectively.
Although further improvements of the system are needed, experimental results indicated the effectiveness of machine learning techniques for estimation of gastric cancer risk.</abstract><cop>China</cop><pub>Baishideng Publishing Group Inc</pub><pmid>29467917</pmid><doi>10.4251/wjgo.v10.i2.62</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-5204 |
ispartof | World journal of gastrointestinal oncology, 2018-02, Vol.10 (2), p.62-70 |
issn | 1948-5204 1948-5204 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807881 |
source | Baishideng "World Journal of" online journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Retrospective Study |
title | Preliminary study of automatic gastric cancer risk classification from photofluorography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preliminary%20study%20of%20automatic%20gastric%20cancer%20risk%20classification%20from%20photofluorography&rft.jtitle=World%20journal%20of%20gastrointestinal%20oncology&rft.au=Togo,%20Ren&rft.date=2018-02-15&rft.volume=10&rft.issue=2&rft.spage=62&rft.epage=70&rft.pages=62-70&rft.issn=1948-5204&rft.eissn=1948-5204&rft_id=info:doi/10.4251/wjgo.v10.i2.62&rft_dat=%3Cproquest_pubme%3E2007420663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007420663&rft_id=info:pmid/29467917&rfr_iscdi=true |