Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures
A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cel...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-02, Vol.8 (1), p.2671-14, Article 2671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 2671 |
container_title | Scientific reports |
container_volume | 8 |
creator | Bezenah, Jonathan R. Kong, Yen P. Putnam, Andrew J. |
description | A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established
in vitro
assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized. |
doi_str_mv | 10.1038/s41598-018-20966-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999658508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-4718ab77d23b5f0bb15e6906150b86e2a0a27536f71e528e068a326cdff1b0273</originalsourceid><addsrcrecordid>eNp1UU1v1DAQjRCIVqV_oAdkiQuXwNhZf-SChEopSJW40LPlJJNdl8Re_LGIH8F_xtss1Rapvoxn5r3nGb-quqDwjkKj3scV5a2qgaqaQStETZ9VpwxWvGYNY8-P7ifVeYx3UA5n7Yq2L6uTEhkTHE6rP1c7M2WTrFuTtEGy9QldsmYifiToBl-K0z7tcZoiGTDYHQ5kDH4mmzwbR6wbcl9K2ykHu9BJTDgfGMmT0YeZzLYPfmdinycTiMP0y4cfsbBJ84mUYsoB46vqxWimiOeHeFbdfr76fvmlvvl2_fXy403dcylTvZJUmU7KgTUdH6HrKEfRgqAcOiWQGTBM8kaMkiJnCkEo0zDRD-NIO2CyOas-LLrb3M049GXmYCa9DXY24bf2xurHHWc3eu13mivgUrAi8PYgEPzPjDHp2cb9wsahz1EzAAqiUXIPffMf9M7n4Mp6mrZtK7jioAqKLajySzEGHB-GoaD3huvFcF0M1_eGa1pIr4_XeKD8s7cAmgUQS8utMRy9_bTsX5CHuUY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999658508</pqid></control><display><type>article</type><title>Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Bezenah, Jonathan R. ; Kong, Yen P. ; Putnam, Andrew J.</creator><creatorcontrib>Bezenah, Jonathan R. ; Kong, Yen P. ; Putnam, Andrew J.</creatorcontrib><description>A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established
in vitro
assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-20966-1</identifier><identifier>PMID: 29422650</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/100 ; 13/106 ; 13/107 ; 14 ; 14/19 ; 14/34 ; 38 ; 45/29 ; 45/77 ; 45/90 ; 631/1647/767/1657 ; 631/532/2064/2158 ; 631/61/2035 ; 639/166/985 ; 692/4019/592/16 ; 82/80 ; Angiogenesis ; Autografts ; Cell Differentiation ; Cells, Cultured ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelial Cells - physiology ; Fibrin ; Fibrinolysis ; Fibroblasts ; Fibroblasts - cytology ; Gelatinase B ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - physiology ; Humanities and Social Sciences ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - physiology ; Microvasculature ; Microvessels - physiology ; multidisciplinary ; Neovascularization, Physiologic - physiology ; Plasmin ; Pluripotency ; Regenerative medicine ; Science ; Science (multidisciplinary) ; Stem cells</subject><ispartof>Scientific reports, 2018-02, Vol.8 (1), p.2671-14, Article 2671</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-4718ab77d23b5f0bb15e6906150b86e2a0a27536f71e528e068a326cdff1b0273</citedby><cites>FETCH-LOGICAL-c577t-4718ab77d23b5f0bb15e6906150b86e2a0a27536f71e528e068a326cdff1b0273</cites><orcidid>0000-0002-7163-6386 ; 0000-0002-1262-4377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805762/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805762/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29422650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezenah, Jonathan R.</creatorcontrib><creatorcontrib>Kong, Yen P.</creatorcontrib><creatorcontrib>Putnam, Andrew J.</creatorcontrib><title>Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established
in vitro
assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.</description><subject>13</subject><subject>13/1</subject><subject>13/100</subject><subject>13/106</subject><subject>13/107</subject><subject>14</subject><subject>14/19</subject><subject>14/34</subject><subject>38</subject><subject>45/29</subject><subject>45/77</subject><subject>45/90</subject><subject>631/1647/767/1657</subject><subject>631/532/2064/2158</subject><subject>631/61/2035</subject><subject>639/166/985</subject><subject>692/4019/592/16</subject><subject>82/80</subject><subject>Angiogenesis</subject><subject>Autografts</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - physiology</subject><subject>Fibrin</subject><subject>Fibrinolysis</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Gelatinase B</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - physiology</subject><subject>Microvasculature</subject><subject>Microvessels - physiology</subject><subject>multidisciplinary</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Plasmin</subject><subject>Pluripotency</subject><subject>Regenerative medicine</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UU1v1DAQjRCIVqV_oAdkiQuXwNhZf-SChEopSJW40LPlJJNdl8Re_LGIH8F_xtss1Rapvoxn5r3nGb-quqDwjkKj3scV5a2qgaqaQStETZ9VpwxWvGYNY8-P7ifVeYx3UA5n7Yq2L6uTEhkTHE6rP1c7M2WTrFuTtEGy9QldsmYifiToBl-K0z7tcZoiGTDYHQ5kDH4mmzwbR6wbcl9K2ykHu9BJTDgfGMmT0YeZzLYPfmdinycTiMP0y4cfsbBJ84mUYsoB46vqxWimiOeHeFbdfr76fvmlvvl2_fXy403dcylTvZJUmU7KgTUdH6HrKEfRgqAcOiWQGTBM8kaMkiJnCkEo0zDRD-NIO2CyOas-LLrb3M049GXmYCa9DXY24bf2xurHHWc3eu13mivgUrAi8PYgEPzPjDHp2cb9wsahz1EzAAqiUXIPffMf9M7n4Mp6mrZtK7jioAqKLajySzEGHB-GoaD3huvFcF0M1_eGa1pIr4_XeKD8s7cAmgUQS8utMRy9_bTsX5CHuUY</recordid><startdate>20180208</startdate><enddate>20180208</enddate><creator>Bezenah, Jonathan R.</creator><creator>Kong, Yen P.</creator><creator>Putnam, Andrew J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7163-6386</orcidid><orcidid>https://orcid.org/0000-0002-1262-4377</orcidid></search><sort><creationdate>20180208</creationdate><title>Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures</title><author>Bezenah, Jonathan R. ; Kong, Yen P. ; Putnam, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-4718ab77d23b5f0bb15e6906150b86e2a0a27536f71e528e068a326cdff1b0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13</topic><topic>13/1</topic><topic>13/100</topic><topic>13/106</topic><topic>13/107</topic><topic>14</topic><topic>14/19</topic><topic>14/34</topic><topic>38</topic><topic>45/29</topic><topic>45/77</topic><topic>45/90</topic><topic>631/1647/767/1657</topic><topic>631/532/2064/2158</topic><topic>631/61/2035</topic><topic>639/166/985</topic><topic>692/4019/592/16</topic><topic>82/80</topic><topic>Angiogenesis</topic><topic>Autografts</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - physiology</topic><topic>Fibrin</topic><topic>Fibrinolysis</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Gelatinase B</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - physiology</topic><topic>Microvasculature</topic><topic>Microvessels - physiology</topic><topic>multidisciplinary</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Plasmin</topic><topic>Pluripotency</topic><topic>Regenerative medicine</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezenah, Jonathan R.</creatorcontrib><creatorcontrib>Kong, Yen P.</creatorcontrib><creatorcontrib>Putnam, Andrew J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezenah, Jonathan R.</au><au>Kong, Yen P.</au><au>Putnam, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-02-08</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>2671</spage><epage>14</epage><pages>2671-14</pages><artnum>2671</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established
in vitro
assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29422650</pmid><doi>10.1038/s41598-018-20966-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7163-6386</orcidid><orcidid>https://orcid.org/0000-0002-1262-4377</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-02, Vol.8 (1), p.2671-14, Article 2671 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805762 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13 13/1 13/100 13/106 13/107 14 14/19 14/34 38 45/29 45/77 45/90 631/1647/767/1657 631/532/2064/2158 631/61/2035 639/166/985 692/4019/592/16 82/80 Angiogenesis Autografts Cell Differentiation Cells, Cultured Endothelial cells Endothelial Cells - metabolism Endothelial Cells - physiology Fibrin Fibrinolysis Fibroblasts Fibroblasts - cytology Gelatinase B Human Umbilical Vein Endothelial Cells - cytology Human Umbilical Vein Endothelial Cells - physiology Humanities and Social Sciences Humans Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - physiology Microvasculature Microvessels - physiology multidisciplinary Neovascularization, Physiologic - physiology Plasmin Pluripotency Regenerative medicine Science Science (multidisciplinary) Stem cells |
title | Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20potential%20of%20endothelial%20cells%20derived%20from%20human%20induced%20pluripotent%20stem%20cells%20to%20form%20microvascular%20networks%20in%203D%20cultures&rft.jtitle=Scientific%20reports&rft.au=Bezenah,%20Jonathan%20R.&rft.date=2018-02-08&rft.volume=8&rft.issue=1&rft.spage=2671&rft.epage=14&rft.pages=2671-14&rft.artnum=2671&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-20966-1&rft_dat=%3Cproquest_pubme%3E1999658508%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999658508&rft_id=info:pmid/29422650&rfr_iscdi=true |