Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures

A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-02, Vol.8 (1), p.2671-14, Article 2671
Hauptverfasser: Bezenah, Jonathan R., Kong, Yen P., Putnam, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 2671
container_title Scientific reports
container_volume 8
creator Bezenah, Jonathan R.
Kong, Yen P.
Putnam, Andrew J.
description A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established in vitro assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.
doi_str_mv 10.1038/s41598-018-20966-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999658508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-4718ab77d23b5f0bb15e6906150b86e2a0a27536f71e528e068a326cdff1b0273</originalsourceid><addsrcrecordid>eNp1UU1v1DAQjRCIVqV_oAdkiQuXwNhZf-SChEopSJW40LPlJJNdl8Re_LGIH8F_xtss1Rapvoxn5r3nGb-quqDwjkKj3scV5a2qgaqaQStETZ9VpwxWvGYNY8-P7ifVeYx3UA5n7Yq2L6uTEhkTHE6rP1c7M2WTrFuTtEGy9QldsmYifiToBl-K0z7tcZoiGTDYHQ5kDH4mmzwbR6wbcl9K2ykHu9BJTDgfGMmT0YeZzLYPfmdinycTiMP0y4cfsbBJ84mUYsoB46vqxWimiOeHeFbdfr76fvmlvvl2_fXy403dcylTvZJUmU7KgTUdH6HrKEfRgqAcOiWQGTBM8kaMkiJnCkEo0zDRD-NIO2CyOas-LLrb3M049GXmYCa9DXY24bf2xurHHWc3eu13mivgUrAi8PYgEPzPjDHp2cb9wsahz1EzAAqiUXIPffMf9M7n4Mp6mrZtK7jioAqKLajySzEGHB-GoaD3huvFcF0M1_eGa1pIr4_XeKD8s7cAmgUQS8utMRy9_bTsX5CHuUY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999658508</pqid></control><display><type>article</type><title>Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Bezenah, Jonathan R. ; Kong, Yen P. ; Putnam, Andrew J.</creator><creatorcontrib>Bezenah, Jonathan R. ; Kong, Yen P. ; Putnam, Andrew J.</creatorcontrib><description>A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established in vitro assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-20966-1</identifier><identifier>PMID: 29422650</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/100 ; 13/106 ; 13/107 ; 14 ; 14/19 ; 14/34 ; 38 ; 45/29 ; 45/77 ; 45/90 ; 631/1647/767/1657 ; 631/532/2064/2158 ; 631/61/2035 ; 639/166/985 ; 692/4019/592/16 ; 82/80 ; Angiogenesis ; Autografts ; Cell Differentiation ; Cells, Cultured ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelial Cells - physiology ; Fibrin ; Fibrinolysis ; Fibroblasts ; Fibroblasts - cytology ; Gelatinase B ; Human Umbilical Vein Endothelial Cells - cytology ; Human Umbilical Vein Endothelial Cells - physiology ; Humanities and Social Sciences ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - physiology ; Microvasculature ; Microvessels - physiology ; multidisciplinary ; Neovascularization, Physiologic - physiology ; Plasmin ; Pluripotency ; Regenerative medicine ; Science ; Science (multidisciplinary) ; Stem cells</subject><ispartof>Scientific reports, 2018-02, Vol.8 (1), p.2671-14, Article 2671</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-4718ab77d23b5f0bb15e6906150b86e2a0a27536f71e528e068a326cdff1b0273</citedby><cites>FETCH-LOGICAL-c577t-4718ab77d23b5f0bb15e6906150b86e2a0a27536f71e528e068a326cdff1b0273</cites><orcidid>0000-0002-7163-6386 ; 0000-0002-1262-4377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805762/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805762/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29422650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezenah, Jonathan R.</creatorcontrib><creatorcontrib>Kong, Yen P.</creatorcontrib><creatorcontrib>Putnam, Andrew J.</creatorcontrib><title>Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established in vitro assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.</description><subject>13</subject><subject>13/1</subject><subject>13/100</subject><subject>13/106</subject><subject>13/107</subject><subject>14</subject><subject>14/19</subject><subject>14/34</subject><subject>38</subject><subject>45/29</subject><subject>45/77</subject><subject>45/90</subject><subject>631/1647/767/1657</subject><subject>631/532/2064/2158</subject><subject>631/61/2035</subject><subject>639/166/985</subject><subject>692/4019/592/16</subject><subject>82/80</subject><subject>Angiogenesis</subject><subject>Autografts</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - physiology</subject><subject>Fibrin</subject><subject>Fibrinolysis</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Gelatinase B</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Human Umbilical Vein Endothelial Cells - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - physiology</subject><subject>Microvasculature</subject><subject>Microvessels - physiology</subject><subject>multidisciplinary</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Plasmin</subject><subject>Pluripotency</subject><subject>Regenerative medicine</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UU1v1DAQjRCIVqV_oAdkiQuXwNhZf-SChEopSJW40LPlJJNdl8Re_LGIH8F_xtss1Rapvoxn5r3nGb-quqDwjkKj3scV5a2qgaqaQStETZ9VpwxWvGYNY8-P7ifVeYx3UA5n7Yq2L6uTEhkTHE6rP1c7M2WTrFuTtEGy9QldsmYifiToBl-K0z7tcZoiGTDYHQ5kDH4mmzwbR6wbcl9K2ykHu9BJTDgfGMmT0YeZzLYPfmdinycTiMP0y4cfsbBJ84mUYsoB46vqxWimiOeHeFbdfr76fvmlvvl2_fXy403dcylTvZJUmU7KgTUdH6HrKEfRgqAcOiWQGTBM8kaMkiJnCkEo0zDRD-NIO2CyOas-LLrb3M049GXmYCa9DXY24bf2xurHHWc3eu13mivgUrAi8PYgEPzPjDHp2cb9wsahz1EzAAqiUXIPffMf9M7n4Mp6mrZtK7jioAqKLajySzEGHB-GoaD3huvFcF0M1_eGa1pIr4_XeKD8s7cAmgUQS8utMRy9_bTsX5CHuUY</recordid><startdate>20180208</startdate><enddate>20180208</enddate><creator>Bezenah, Jonathan R.</creator><creator>Kong, Yen P.</creator><creator>Putnam, Andrew J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7163-6386</orcidid><orcidid>https://orcid.org/0000-0002-1262-4377</orcidid></search><sort><creationdate>20180208</creationdate><title>Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures</title><author>Bezenah, Jonathan R. ; Kong, Yen P. ; Putnam, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-4718ab77d23b5f0bb15e6906150b86e2a0a27536f71e528e068a326cdff1b0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13</topic><topic>13/1</topic><topic>13/100</topic><topic>13/106</topic><topic>13/107</topic><topic>14</topic><topic>14/19</topic><topic>14/34</topic><topic>38</topic><topic>45/29</topic><topic>45/77</topic><topic>45/90</topic><topic>631/1647/767/1657</topic><topic>631/532/2064/2158</topic><topic>631/61/2035</topic><topic>639/166/985</topic><topic>692/4019/592/16</topic><topic>82/80</topic><topic>Angiogenesis</topic><topic>Autografts</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - physiology</topic><topic>Fibrin</topic><topic>Fibrinolysis</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Gelatinase B</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Human Umbilical Vein Endothelial Cells - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - physiology</topic><topic>Microvasculature</topic><topic>Microvessels - physiology</topic><topic>multidisciplinary</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Plasmin</topic><topic>Pluripotency</topic><topic>Regenerative medicine</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezenah, Jonathan R.</creatorcontrib><creatorcontrib>Kong, Yen P.</creatorcontrib><creatorcontrib>Putnam, Andrew J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezenah, Jonathan R.</au><au>Kong, Yen P.</au><au>Putnam, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-02-08</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>2671</spage><epage>14</epage><pages>2671-14</pages><artnum>2671</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A major translational challenge in the fields of therapeutic angiogenesis and regenerative medicine is the need to create functional microvasculature. The purpose of this study was to assess whether a potentially autologous endothelial cell (EC) source derived from human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable microvasculature as previously documented for other sources of ECs. We utilized a well-established in vitro assay, in which endothelial cell-coated (iPSC-EC or HUVEC) beads were co-embedded with fibroblasts in a 3D fibrin matrix to assess their ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary network formation compared to HUVECs. Increasing matrix density reduced sprouting, although this effect was attenuated by distributing the NHLFs throughout the matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-cultures at later time points, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-ECs. Collectively, these findings suggest fundamental differences in EC phenotypes must be better understood to enable the promise and potential of iPSC-ECs for clinical translation to be realized.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29422650</pmid><doi>10.1038/s41598-018-20966-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7163-6386</orcidid><orcidid>https://orcid.org/0000-0002-1262-4377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-02, Vol.8 (1), p.2671-14, Article 2671
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805762
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13
13/1
13/100
13/106
13/107
14
14/19
14/34
38
45/29
45/77
45/90
631/1647/767/1657
631/532/2064/2158
631/61/2035
639/166/985
692/4019/592/16
82/80
Angiogenesis
Autografts
Cell Differentiation
Cells, Cultured
Endothelial cells
Endothelial Cells - metabolism
Endothelial Cells - physiology
Fibrin
Fibrinolysis
Fibroblasts
Fibroblasts - cytology
Gelatinase B
Human Umbilical Vein Endothelial Cells - cytology
Human Umbilical Vein Endothelial Cells - physiology
Humanities and Social Sciences
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - physiology
Microvasculature
Microvessels - physiology
multidisciplinary
Neovascularization, Physiologic - physiology
Plasmin
Pluripotency
Regenerative medicine
Science
Science (multidisciplinary)
Stem cells
title Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20potential%20of%20endothelial%20cells%20derived%20from%20human%20induced%20pluripotent%20stem%20cells%20to%20form%20microvascular%20networks%20in%203D%20cultures&rft.jtitle=Scientific%20reports&rft.au=Bezenah,%20Jonathan%20R.&rft.date=2018-02-08&rft.volume=8&rft.issue=1&rft.spage=2671&rft.epage=14&rft.pages=2671-14&rft.artnum=2671&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-20966-1&rft_dat=%3Cproquest_pubme%3E1999658508%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999658508&rft_id=info:pmid/29422650&rfr_iscdi=true