The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure

A critical mystery in neuroscience lies in determining how anatomical structure impacts the complex functional dynamics of the brain. How does large-scale brain circuitry constrain states of neuronal activity and transitions between those states? We address these questions using a maximum entropy mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-02, Vol.8 (1), p.2507-15, Article 2507
Hauptverfasser: Gu, Shi, Cieslak, Matthew, Baird, Benjamin, Muldoon, Sarah F., Grafton, Scott T., Pasqualetti, Fabio, Bassett, Danielle S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 2507
container_title Scientific reports
container_volume 8
creator Gu, Shi
Cieslak, Matthew
Baird, Benjamin
Muldoon, Sarah F.
Grafton, Scott T.
Pasqualetti, Fabio
Bassett, Danielle S.
description A critical mystery in neuroscience lies in determining how anatomical structure impacts the complex functional dynamics of the brain. How does large-scale brain circuitry constrain states of neuronal activity and transitions between those states? We address these questions using a maximum entropy model of brain dynamics informed by white matter tractography. We demonstrate that the most probable brain states – characterized by minimal energy – display common activation profiles across brain areas: local spatially-contiguous sets of brain regions reminiscent of cognitive systems are co-activated frequently. The predicted activation rate of these systems is highly correlated with the observed activation rate measured in a separate resting state fMRI data set, validating the utility of the maximum entropy model in describing neurophysiological dynamics. This approach also offers a formal notion of the energy of activity within a system, and the energy of activity shared between systems. We observe that within- and between-system energies cleanly separate cognitive systems into distinct categories, optimized for differential contributions to integrated versus segregated function. These results support the notion that energetic and structural constraints circumscribe brain dynamics, offering insights into the roles that cognitive systems play in driving whole-brain activation patterns.
doi_str_mv 10.1038/s41598-018-20123-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5802783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1995234083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-90b74ea58778dd1055e2c04f69f2fbbedb2124d07d5c47c87721ec509db6f8cb3</originalsourceid><addsrcrecordid>eNp1kcFOGzEQhq2KqiDKC_RQWeLCZYvttbP2BQkiaJGi9FCqHi2vdzYx3awX2wvK29dJAKVIzGHG0nzzj0c_Ql8o-UZJKc8jp0LJglBZMEJZWcgP6IgRLgpWMnaw9z5EJzHekxyCKU7VJ3S4qYTLyRH6c7cEfN1DWKzxzPRNtGYA7Fs8hzH4YbmOznd-4azp8KVN7tGlNb5dDZ2zLmHX46tgcp5DevLhL_6VwmjTGOAz-tiaLsLJcz1Gv2-u76Y_itnP77fTy1lhBSepUKSuOBghq0o2DSVCALOEtxPVsrauoakZZbwhVSMsr2zGGAUriGrqSSttXR6ji53uMNYraCz0KZhOD8GtTFhrb5z-v9O7pV74Ry0kYZUss8DZs0DwDyPEpFcuWug604Mfo6ZKKapYKVhGT9-g934MfT5vQ2WAk60g21E2-BgDtK-foURvrNM763S2Tm-t0zIPfd0_43XkxagMlDsg5la_gLC3-33Zf2vEpVE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1995234083</pqid></control><display><type>article</type><title>The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Nature Free</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Springer Nature OA Free Journals</source><creator>Gu, Shi ; Cieslak, Matthew ; Baird, Benjamin ; Muldoon, Sarah F. ; Grafton, Scott T. ; Pasqualetti, Fabio ; Bassett, Danielle S.</creator><creatorcontrib>Gu, Shi ; Cieslak, Matthew ; Baird, Benjamin ; Muldoon, Sarah F. ; Grafton, Scott T. ; Pasqualetti, Fabio ; Bassett, Danielle S.</creatorcontrib><description>A critical mystery in neuroscience lies in determining how anatomical structure impacts the complex functional dynamics of the brain. How does large-scale brain circuitry constrain states of neuronal activity and transitions between those states? We address these questions using a maximum entropy model of brain dynamics informed by white matter tractography. We demonstrate that the most probable brain states – characterized by minimal energy – display common activation profiles across brain areas: local spatially-contiguous sets of brain regions reminiscent of cognitive systems are co-activated frequently. The predicted activation rate of these systems is highly correlated with the observed activation rate measured in a separate resting state fMRI data set, validating the utility of the maximum entropy model in describing neurophysiological dynamics. This approach also offers a formal notion of the energy of activity within a system, and the energy of activity shared between systems. We observe that within- and between-system energies cleanly separate cognitive systems into distinct categories, optimized for differential contributions to integrated versus segregated function. These results support the notion that energetic and structural constraints circumscribe brain dynamics, offering insights into the roles that cognitive systems play in driving whole-brain activation patterns.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-20123-8</identifier><identifier>PMID: 29410486</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116/1925 ; 631/378/116/2393 ; Adolescent ; Adult ; Brain ; Brain - physiology ; Brain mapping ; Cognitive ability ; Diffusion Tensor Imaging ; Energy ; Entropy ; Female ; Functional magnetic resonance imaging ; Humanities and Social Sciences ; Humans ; Hypotheses ; Magnetic Resonance Imaging ; Male ; Maximum entropy ; multidisciplinary ; Nerve Net - physiology ; Nervous system ; Science ; Science (multidisciplinary) ; Substantia alba ; White Matter - physiology</subject><ispartof>Scientific reports, 2018-02, Vol.8 (1), p.2507-15, Article 2507</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-90b74ea58778dd1055e2c04f69f2fbbedb2124d07d5c47c87721ec509db6f8cb3</citedby><cites>FETCH-LOGICAL-c540t-90b74ea58778dd1055e2c04f69f2fbbedb2124d07d5c47c87721ec509db6f8cb3</cites><orcidid>0000-0002-2830-9291 ; 0000-0002-6183-4493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802783/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802783/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29410486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Shi</creatorcontrib><creatorcontrib>Cieslak, Matthew</creatorcontrib><creatorcontrib>Baird, Benjamin</creatorcontrib><creatorcontrib>Muldoon, Sarah F.</creatorcontrib><creatorcontrib>Grafton, Scott T.</creatorcontrib><creatorcontrib>Pasqualetti, Fabio</creatorcontrib><creatorcontrib>Bassett, Danielle S.</creatorcontrib><title>The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A critical mystery in neuroscience lies in determining how anatomical structure impacts the complex functional dynamics of the brain. How does large-scale brain circuitry constrain states of neuronal activity and transitions between those states? We address these questions using a maximum entropy model of brain dynamics informed by white matter tractography. We demonstrate that the most probable brain states – characterized by minimal energy – display common activation profiles across brain areas: local spatially-contiguous sets of brain regions reminiscent of cognitive systems are co-activated frequently. The predicted activation rate of these systems is highly correlated with the observed activation rate measured in a separate resting state fMRI data set, validating the utility of the maximum entropy model in describing neurophysiological dynamics. This approach also offers a formal notion of the energy of activity within a system, and the energy of activity shared between systems. We observe that within- and between-system energies cleanly separate cognitive systems into distinct categories, optimized for differential contributions to integrated versus segregated function. These results support the notion that energetic and structural constraints circumscribe brain dynamics, offering insights into the roles that cognitive systems play in driving whole-brain activation patterns.</description><subject>631/378/116/1925</subject><subject>631/378/116/2393</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain mapping</subject><subject>Cognitive ability</subject><subject>Diffusion Tensor Imaging</subject><subject>Energy</subject><subject>Entropy</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Maximum entropy</subject><subject>multidisciplinary</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substantia alba</subject><subject>White Matter - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcFOGzEQhq2KqiDKC_RQWeLCZYvttbP2BQkiaJGi9FCqHi2vdzYx3awX2wvK29dJAKVIzGHG0nzzj0c_Ql8o-UZJKc8jp0LJglBZMEJZWcgP6IgRLgpWMnaw9z5EJzHekxyCKU7VJ3S4qYTLyRH6c7cEfN1DWKzxzPRNtGYA7Fs8hzH4YbmOznd-4azp8KVN7tGlNb5dDZ2zLmHX46tgcp5DevLhL_6VwmjTGOAz-tiaLsLJcz1Gv2-u76Y_itnP77fTy1lhBSepUKSuOBghq0o2DSVCALOEtxPVsrauoakZZbwhVSMsr2zGGAUriGrqSSttXR6ji53uMNYraCz0KZhOD8GtTFhrb5z-v9O7pV74Ry0kYZUss8DZs0DwDyPEpFcuWug604Mfo6ZKKapYKVhGT9-g934MfT5vQ2WAk60g21E2-BgDtK-foURvrNM763S2Tm-t0zIPfd0_43XkxagMlDsg5la_gLC3-33Zf2vEpVE</recordid><startdate>20180206</startdate><enddate>20180206</enddate><creator>Gu, Shi</creator><creator>Cieslak, Matthew</creator><creator>Baird, Benjamin</creator><creator>Muldoon, Sarah F.</creator><creator>Grafton, Scott T.</creator><creator>Pasqualetti, Fabio</creator><creator>Bassett, Danielle S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2830-9291</orcidid><orcidid>https://orcid.org/0000-0002-6183-4493</orcidid></search><sort><creationdate>20180206</creationdate><title>The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure</title><author>Gu, Shi ; Cieslak, Matthew ; Baird, Benjamin ; Muldoon, Sarah F. ; Grafton, Scott T. ; Pasqualetti, Fabio ; Bassett, Danielle S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-90b74ea58778dd1055e2c04f69f2fbbedb2124d07d5c47c87721ec509db6f8cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378/116/1925</topic><topic>631/378/116/2393</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain mapping</topic><topic>Cognitive ability</topic><topic>Diffusion Tensor Imaging</topic><topic>Energy</topic><topic>Entropy</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Maximum entropy</topic><topic>multidisciplinary</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substantia alba</topic><topic>White Matter - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Shi</creatorcontrib><creatorcontrib>Cieslak, Matthew</creatorcontrib><creatorcontrib>Baird, Benjamin</creatorcontrib><creatorcontrib>Muldoon, Sarah F.</creatorcontrib><creatorcontrib>Grafton, Scott T.</creatorcontrib><creatorcontrib>Pasqualetti, Fabio</creatorcontrib><creatorcontrib>Bassett, Danielle S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Shi</au><au>Cieslak, Matthew</au><au>Baird, Benjamin</au><au>Muldoon, Sarah F.</au><au>Grafton, Scott T.</au><au>Pasqualetti, Fabio</au><au>Bassett, Danielle S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-02-06</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>2507</spage><epage>15</epage><pages>2507-15</pages><artnum>2507</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A critical mystery in neuroscience lies in determining how anatomical structure impacts the complex functional dynamics of the brain. How does large-scale brain circuitry constrain states of neuronal activity and transitions between those states? We address these questions using a maximum entropy model of brain dynamics informed by white matter tractography. We demonstrate that the most probable brain states – characterized by minimal energy – display common activation profiles across brain areas: local spatially-contiguous sets of brain regions reminiscent of cognitive systems are co-activated frequently. The predicted activation rate of these systems is highly correlated with the observed activation rate measured in a separate resting state fMRI data set, validating the utility of the maximum entropy model in describing neurophysiological dynamics. This approach also offers a formal notion of the energy of activity within a system, and the energy of activity shared between systems. We observe that within- and between-system energies cleanly separate cognitive systems into distinct categories, optimized for differential contributions to integrated versus segregated function. These results support the notion that energetic and structural constraints circumscribe brain dynamics, offering insights into the roles that cognitive systems play in driving whole-brain activation patterns.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29410486</pmid><doi>10.1038/s41598-018-20123-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2830-9291</orcidid><orcidid>https://orcid.org/0000-0002-6183-4493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-02, Vol.8 (1), p.2507-15, Article 2507
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5802783
source PubMed (Medline); MEDLINE; Nature Free; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library; Springer Nature OA Free Journals
subjects 631/378/116/1925
631/378/116/2393
Adolescent
Adult
Brain
Brain - physiology
Brain mapping
Cognitive ability
Diffusion Tensor Imaging
Energy
Entropy
Female
Functional magnetic resonance imaging
Humanities and Social Sciences
Humans
Hypotheses
Magnetic Resonance Imaging
Male
Maximum entropy
multidisciplinary
Nerve Net - physiology
Nervous system
Science
Science (multidisciplinary)
Substantia alba
White Matter - physiology
title The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Energy%20Landscape%20of%20Neurophysiological%20Activity%20Implicit%20in%20Brain%20Network%20Structure&rft.jtitle=Scientific%20reports&rft.au=Gu,%20Shi&rft.date=2018-02-06&rft.volume=8&rft.issue=1&rft.spage=2507&rft.epage=15&rft.pages=2507-15&rft.artnum=2507&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-20123-8&rft_dat=%3Cproquest_pubme%3E1995234083%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1995234083&rft_id=info:pmid/29410486&rfr_iscdi=true