Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization

Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2018-02, Vol.19 (2), p.320-336
Hauptverfasser: Verlande, Amandine, Krafčíková, Michaela, Potěšil, David, Trantírek, Lukáš, Zdráhal, Zbyněk, Elkalaf, Moustafa, Trnka, Jan, Souček, Karel, Rauch, Nora, Rauch, Jens, Kolch, Walter, Uldrijan, Stjepan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 2
container_start_page 320
container_title EMBO reports
container_volume 19
creator Verlande, Amandine
Krafčíková, Michaela
Potěšil, David
Trantírek, Lukáš
Zdráhal, Zbyněk
Elkalaf, Moustafa
Trnka, Jan
Souček, Karel
Rauch, Nora
Rauch, Jens
Kolch, Walter
Uldrijan, Stjepan
description Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAF V600E ‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAF V600E ‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary. Synopsis Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma. Metabolic stress induces CRAF/KSR dimerization in NRAS‐mutant cells, increasing ERK activity. Metabolically stressed BRAF V600E ‐mutant cells show an interaction of KSR with oncogenic BRAF. High metabolic stress leads to the dissociation of mutant BRAF from KSR, reducing ERK activity. Successful metabolic targeting strategies depend on the RAS/RAF mutational status. Graphical Abstract Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.
doi_str_mv 10.15252/embr.201744524
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5797961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979513008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5134-ba69e14e302715d1858e42d391627ffdd9fb34165b3538a5d4ac1cf34ec2cabd3</originalsourceid><addsrcrecordid>eNqFkc1qFEEUhYugJDFm7U4a3LiZpH67u1wIMUxUkhCYGMiuqK6-PalQ3ZVUVUfGlY_gM_okls44TALi6l643zmcy0HoFcEHRFBBD6FvwgHFpOJcUL6Fdgkv5YSRqn622ikl1zvoRYy3GGMhq3ob7VBJS5ZVu-jyHJJuvLOmiClAjEWA-eh0glhMZ6eFNsk-2LQomkVh_JCCd84O8-L0cvbz-4_Z0UlxAwmCb20PwX7TyfrhJXreaRdhfzX30NXJ9Mvxp8nZxcfPx0dnEyMI45NGlxIIB4ZpRURLalEDpy2TpKRV17Wt7BrGSSkaJlitRcu1IaZjHAw1umnZHnq_9L0bmx5aAzmeduou2F6HhfLaqseXwd6ouX9QopKVLEk2eLsyCP5-hJhUb6MB5_QAfoyKZCxHxbjO6Jsn6K0fw5Dfy5RkkmImykwdLikTfIwBunUYgtWfwtTvwtS6sKx4vfnDmv_bUAbeLYGv1sHif35qev5htumOl-KYdcMcwkbqfwT6BevUtI0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993920356</pqid></control><display><type>article</type><title>Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization</title><source>Springer Open Access</source><creator>Verlande, Amandine ; Krafčíková, Michaela ; Potěšil, David ; Trantírek, Lukáš ; Zdráhal, Zbyněk ; Elkalaf, Moustafa ; Trnka, Jan ; Souček, Karel ; Rauch, Nora ; Rauch, Jens ; Kolch, Walter ; Uldrijan, Stjepan</creator><creatorcontrib>Verlande, Amandine ; Krafčíková, Michaela ; Potěšil, David ; Trantírek, Lukáš ; Zdráhal, Zbyněk ; Elkalaf, Moustafa ; Trnka, Jan ; Souček, Karel ; Rauch, Nora ; Rauch, Jens ; Kolch, Walter ; Uldrijan, Stjepan</creatorcontrib><description>Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAF V600E ‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAF V600E ‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary. Synopsis Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma. Metabolic stress induces CRAF/KSR dimerization in NRAS‐mutant cells, increasing ERK activity. Metabolically stressed BRAF V600E ‐mutant cells show an interaction of KSR with oncogenic BRAF. High metabolic stress leads to the dissociation of mutant BRAF from KSR, reducing ERK activity. Successful metabolic targeting strategies depend on the RAS/RAF mutational status. Graphical Abstract Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201744524</identifier><identifier>PMID: 29263201</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14-3-3 Proteins - chemistry ; 14-3-3 Proteins - metabolism ; Cancer ; Cell cycle ; cell cycle arrest ; Cell Cycle Checkpoints - genetics ; Cell Line, Tumor ; cell survival ; Deregulation ; Dimerization ; EMBO03 ; EMBO21 ; EMBO37 ; Energy metabolism ; Enzyme Activation ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Glucose - metabolism ; Glycolysis ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; Humans ; Melanoma ; Melanoma - genetics ; Melanoma - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metabolic pathways ; metabolic stress ; Metabolism ; Mutants ; Mutation ; Oxygen Consumption ; Protein Kinases - chemistry ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein Multimerization ; Proteins ; raf Kinases - chemistry ; raf Kinases - genetics ; raf Kinases - metabolism ; Raf protein ; RAF‐ERK signaling ; Recombinant Fusion Proteins ; Signaling ; Stress, Physiological ; Stresses</subject><ispartof>EMBO reports, 2018-02, Vol.19 (2), p.320-336</ispartof><rights>The Authors 2017</rights><rights>2017 The Authors</rights><rights>2017 The Authors.</rights><rights>2018 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5134-ba69e14e302715d1858e42d391627ffdd9fb34165b3538a5d4ac1cf34ec2cabd3</citedby><cites>FETCH-LOGICAL-c5134-ba69e14e302715d1858e42d391627ffdd9fb34165b3538a5d4ac1cf34ec2cabd3</cites><orcidid>0000-0001-5777-5016 ; 0000-0001-8316-2539 ; 0000-0001-6794-4119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797961/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797961/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embr.201744524$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29263201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verlande, Amandine</creatorcontrib><creatorcontrib>Krafčíková, Michaela</creatorcontrib><creatorcontrib>Potěšil, David</creatorcontrib><creatorcontrib>Trantírek, Lukáš</creatorcontrib><creatorcontrib>Zdráhal, Zbyněk</creatorcontrib><creatorcontrib>Elkalaf, Moustafa</creatorcontrib><creatorcontrib>Trnka, Jan</creatorcontrib><creatorcontrib>Souček, Karel</creatorcontrib><creatorcontrib>Rauch, Nora</creatorcontrib><creatorcontrib>Rauch, Jens</creatorcontrib><creatorcontrib>Kolch, Walter</creatorcontrib><creatorcontrib>Uldrijan, Stjepan</creatorcontrib><title>Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAF V600E ‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAF V600E ‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary. Synopsis Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma. Metabolic stress induces CRAF/KSR dimerization in NRAS‐mutant cells, increasing ERK activity. Metabolically stressed BRAF V600E ‐mutant cells show an interaction of KSR with oncogenic BRAF. High metabolic stress leads to the dissociation of mutant BRAF from KSR, reducing ERK activity. Successful metabolic targeting strategies depend on the RAS/RAF mutational status. Graphical Abstract Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.</description><subject>14-3-3 Proteins - chemistry</subject><subject>14-3-3 Proteins - metabolism</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>cell cycle arrest</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Line, Tumor</subject><subject>cell survival</subject><subject>Deregulation</subject><subject>Dimerization</subject><subject>EMBO03</subject><subject>EMBO21</subject><subject>EMBO37</subject><subject>Energy metabolism</subject><subject>Enzyme Activation</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Glucose - metabolism</subject><subject>Glycolysis</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Humans</subject><subject>Melanoma</subject><subject>Melanoma - genetics</subject><subject>Melanoma - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolic pathways</subject><subject>metabolic stress</subject><subject>Metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oxygen Consumption</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>raf Kinases - chemistry</subject><subject>raf Kinases - genetics</subject><subject>raf Kinases - metabolism</subject><subject>Raf protein</subject><subject>RAF‐ERK signaling</subject><subject>Recombinant Fusion Proteins</subject><subject>Signaling</subject><subject>Stress, Physiological</subject><subject>Stresses</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1qFEEUhYugJDFm7U4a3LiZpH67u1wIMUxUkhCYGMiuqK6-PalQ3ZVUVUfGlY_gM_okls44TALi6l643zmcy0HoFcEHRFBBD6FvwgHFpOJcUL6Fdgkv5YSRqn622ikl1zvoRYy3GGMhq3ob7VBJS5ZVu-jyHJJuvLOmiClAjEWA-eh0glhMZ6eFNsk-2LQomkVh_JCCd84O8-L0cvbz-4_Z0UlxAwmCb20PwX7TyfrhJXreaRdhfzX30NXJ9Mvxp8nZxcfPx0dnEyMI45NGlxIIB4ZpRURLalEDpy2TpKRV17Wt7BrGSSkaJlitRcu1IaZjHAw1umnZHnq_9L0bmx5aAzmeduou2F6HhfLaqseXwd6ouX9QopKVLEk2eLsyCP5-hJhUb6MB5_QAfoyKZCxHxbjO6Jsn6K0fw5Dfy5RkkmImykwdLikTfIwBunUYgtWfwtTvwtS6sKx4vfnDmv_bUAbeLYGv1sHif35qev5htumOl-KYdcMcwkbqfwT6BevUtI0</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Verlande, Amandine</creator><creator>Krafčíková, Michaela</creator><creator>Potěšil, David</creator><creator>Trantírek, Lukáš</creator><creator>Zdráhal, Zbyněk</creator><creator>Elkalaf, Moustafa</creator><creator>Trnka, Jan</creator><creator>Souček, Karel</creator><creator>Rauch, Nora</creator><creator>Rauch, Jens</creator><creator>Kolch, Walter</creator><creator>Uldrijan, Stjepan</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5777-5016</orcidid><orcidid>https://orcid.org/0000-0001-8316-2539</orcidid><orcidid>https://orcid.org/0000-0001-6794-4119</orcidid></search><sort><creationdate>201802</creationdate><title>Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization</title><author>Verlande, Amandine ; Krafčíková, Michaela ; Potěšil, David ; Trantírek, Lukáš ; Zdráhal, Zbyněk ; Elkalaf, Moustafa ; Trnka, Jan ; Souček, Karel ; Rauch, Nora ; Rauch, Jens ; Kolch, Walter ; Uldrijan, Stjepan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5134-ba69e14e302715d1858e42d391627ffdd9fb34165b3538a5d4ac1cf34ec2cabd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14-3-3 Proteins - chemistry</topic><topic>14-3-3 Proteins - metabolism</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>cell cycle arrest</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Line, Tumor</topic><topic>cell survival</topic><topic>Deregulation</topic><topic>Dimerization</topic><topic>EMBO03</topic><topic>EMBO21</topic><topic>EMBO37</topic><topic>Energy metabolism</topic><topic>Enzyme Activation</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Glucose - metabolism</topic><topic>Glycolysis</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Humans</topic><topic>Melanoma</topic><topic>Melanoma - genetics</topic><topic>Melanoma - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolic pathways</topic><topic>metabolic stress</topic><topic>Metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oxygen Consumption</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>raf Kinases - chemistry</topic><topic>raf Kinases - genetics</topic><topic>raf Kinases - metabolism</topic><topic>Raf protein</topic><topic>RAF‐ERK signaling</topic><topic>Recombinant Fusion Proteins</topic><topic>Signaling</topic><topic>Stress, Physiological</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verlande, Amandine</creatorcontrib><creatorcontrib>Krafčíková, Michaela</creatorcontrib><creatorcontrib>Potěšil, David</creatorcontrib><creatorcontrib>Trantírek, Lukáš</creatorcontrib><creatorcontrib>Zdráhal, Zbyněk</creatorcontrib><creatorcontrib>Elkalaf, Moustafa</creatorcontrib><creatorcontrib>Trnka, Jan</creatorcontrib><creatorcontrib>Souček, Karel</creatorcontrib><creatorcontrib>Rauch, Nora</creatorcontrib><creatorcontrib>Rauch, Jens</creatorcontrib><creatorcontrib>Kolch, Walter</creatorcontrib><creatorcontrib>Uldrijan, Stjepan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verlande, Amandine</au><au>Krafčíková, Michaela</au><au>Potěšil, David</au><au>Trantírek, Lukáš</au><au>Zdráhal, Zbyněk</au><au>Elkalaf, Moustafa</au><au>Trnka, Jan</au><au>Souček, Karel</au><au>Rauch, Nora</au><au>Rauch, Jens</au><au>Kolch, Walter</au><au>Uldrijan, Stjepan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2018-02</date><risdate>2018</risdate><volume>19</volume><issue>2</issue><spage>320</spage><epage>336</epage><pages>320-336</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAF V600E ‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAF V600E ‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary. Synopsis Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma. Metabolic stress induces CRAF/KSR dimerization in NRAS‐mutant cells, increasing ERK activity. Metabolically stressed BRAF V600E ‐mutant cells show an interaction of KSR with oncogenic BRAF. High metabolic stress leads to the dissociation of mutant BRAF from KSR, reducing ERK activity. Successful metabolic targeting strategies depend on the RAS/RAF mutational status. Graphical Abstract Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29263201</pmid><doi>10.15252/embr.201744524</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5777-5016</orcidid><orcidid>https://orcid.org/0000-0001-8316-2539</orcidid><orcidid>https://orcid.org/0000-0001-6794-4119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1469-221X
ispartof EMBO reports, 2018-02, Vol.19 (2), p.320-336
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5797961
source Springer Open Access
subjects 14-3-3 Proteins - chemistry
14-3-3 Proteins - metabolism
Cancer
Cell cycle
cell cycle arrest
Cell Cycle Checkpoints - genetics
Cell Line, Tumor
cell survival
Deregulation
Dimerization
EMBO03
EMBO21
EMBO37
Energy metabolism
Enzyme Activation
Extracellular signal-regulated kinase
Extracellular Signal-Regulated MAP Kinases - metabolism
Glucose - metabolism
Glycolysis
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
Humans
Melanoma
Melanoma - genetics
Melanoma - metabolism
Membrane Proteins - genetics
Membrane Proteins - metabolism
Metabolic pathways
metabolic stress
Metabolism
Mutants
Mutation
Oxygen Consumption
Protein Kinases - chemistry
Protein Kinases - genetics
Protein Kinases - metabolism
Protein Multimerization
Proteins
raf Kinases - chemistry
raf Kinases - genetics
raf Kinases - metabolism
Raf protein
RAF‐ERK signaling
Recombinant Fusion Proteins
Signaling
Stress, Physiological
Stresses
title Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20stress%20regulates%20ERK%20activity%20by%20controlling%20KSR%E2%80%90RAF%20heterodimerization&rft.jtitle=EMBO%20reports&rft.au=Verlande,%20Amandine&rft.date=2018-02&rft.volume=19&rft.issue=2&rft.spage=320&rft.epage=336&rft.pages=320-336&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201744524&rft_dat=%3Cproquest_C6C%3E1979513008%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993920356&rft_id=info:pmid/29263201&rfr_iscdi=true