Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization
Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2018-02, Vol.19 (2), p.320-336 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 2 |
container_start_page | 320 |
container_title | EMBO reports |
container_volume | 19 |
creator | Verlande, Amandine Krafčíková, Michaela Potěšil, David Trantírek, Lukáš Zdráhal, Zbyněk Elkalaf, Moustafa Trnka, Jan Souček, Karel Rauch, Nora Rauch, Jens Kolch, Walter Uldrijan, Stjepan |
description | Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the
NRAS
or
BRAF
oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAF
V600E
‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAF
V600E
‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.
Synopsis
Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.
Metabolic stress induces CRAF/KSR dimerization in NRAS‐mutant cells, increasing ERK activity.
Metabolically stressed BRAF
V600E
‐mutant cells show an interaction of KSR with oncogenic BRAF.
High metabolic stress leads to the dissociation of mutant BRAF from KSR, reducing ERK activity.
Successful metabolic targeting strategies depend on the RAS/RAF mutational status.
Graphical Abstract
Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma. |
doi_str_mv | 10.15252/embr.201744524 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5797961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979513008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5134-ba69e14e302715d1858e42d391627ffdd9fb34165b3538a5d4ac1cf34ec2cabd3</originalsourceid><addsrcrecordid>eNqFkc1qFEEUhYugJDFm7U4a3LiZpH67u1wIMUxUkhCYGMiuqK6-PalQ3ZVUVUfGlY_gM_okls44TALi6l643zmcy0HoFcEHRFBBD6FvwgHFpOJcUL6Fdgkv5YSRqn622ikl1zvoRYy3GGMhq3ob7VBJS5ZVu-jyHJJuvLOmiClAjEWA-eh0glhMZ6eFNsk-2LQomkVh_JCCd84O8-L0cvbz-4_Z0UlxAwmCb20PwX7TyfrhJXreaRdhfzX30NXJ9Mvxp8nZxcfPx0dnEyMI45NGlxIIB4ZpRURLalEDpy2TpKRV17Wt7BrGSSkaJlitRcu1IaZjHAw1umnZHnq_9L0bmx5aAzmeduou2F6HhfLaqseXwd6ouX9QopKVLEk2eLsyCP5-hJhUb6MB5_QAfoyKZCxHxbjO6Jsn6K0fw5Dfy5RkkmImykwdLikTfIwBunUYgtWfwtTvwtS6sKx4vfnDmv_bUAbeLYGv1sHif35qev5htumOl-KYdcMcwkbqfwT6BevUtI0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993920356</pqid></control><display><type>article</type><title>Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization</title><source>Springer Open Access</source><creator>Verlande, Amandine ; Krafčíková, Michaela ; Potěšil, David ; Trantírek, Lukáš ; Zdráhal, Zbyněk ; Elkalaf, Moustafa ; Trnka, Jan ; Souček, Karel ; Rauch, Nora ; Rauch, Jens ; Kolch, Walter ; Uldrijan, Stjepan</creator><creatorcontrib>Verlande, Amandine ; Krafčíková, Michaela ; Potěšil, David ; Trantírek, Lukáš ; Zdráhal, Zbyněk ; Elkalaf, Moustafa ; Trnka, Jan ; Souček, Karel ; Rauch, Nora ; Rauch, Jens ; Kolch, Walter ; Uldrijan, Stjepan</creatorcontrib><description>Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the
NRAS
or
BRAF
oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAF
V600E
‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAF
V600E
‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.
Synopsis
Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.
Metabolic stress induces CRAF/KSR dimerization in NRAS‐mutant cells, increasing ERK activity.
Metabolically stressed BRAF
V600E
‐mutant cells show an interaction of KSR with oncogenic BRAF.
High metabolic stress leads to the dissociation of mutant BRAF from KSR, reducing ERK activity.
Successful metabolic targeting strategies depend on the RAS/RAF mutational status.
Graphical Abstract
Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201744524</identifier><identifier>PMID: 29263201</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14-3-3 Proteins - chemistry ; 14-3-3 Proteins - metabolism ; Cancer ; Cell cycle ; cell cycle arrest ; Cell Cycle Checkpoints - genetics ; Cell Line, Tumor ; cell survival ; Deregulation ; Dimerization ; EMBO03 ; EMBO21 ; EMBO37 ; Energy metabolism ; Enzyme Activation ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Glucose - metabolism ; Glycolysis ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; Humans ; Melanoma ; Melanoma - genetics ; Melanoma - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metabolic pathways ; metabolic stress ; Metabolism ; Mutants ; Mutation ; Oxygen Consumption ; Protein Kinases - chemistry ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein Multimerization ; Proteins ; raf Kinases - chemistry ; raf Kinases - genetics ; raf Kinases - metabolism ; Raf protein ; RAF‐ERK signaling ; Recombinant Fusion Proteins ; Signaling ; Stress, Physiological ; Stresses</subject><ispartof>EMBO reports, 2018-02, Vol.19 (2), p.320-336</ispartof><rights>The Authors 2017</rights><rights>2017 The Authors</rights><rights>2017 The Authors.</rights><rights>2018 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5134-ba69e14e302715d1858e42d391627ffdd9fb34165b3538a5d4ac1cf34ec2cabd3</citedby><cites>FETCH-LOGICAL-c5134-ba69e14e302715d1858e42d391627ffdd9fb34165b3538a5d4ac1cf34ec2cabd3</cites><orcidid>0000-0001-5777-5016 ; 0000-0001-8316-2539 ; 0000-0001-6794-4119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797961/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797961/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embr.201744524$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29263201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verlande, Amandine</creatorcontrib><creatorcontrib>Krafčíková, Michaela</creatorcontrib><creatorcontrib>Potěšil, David</creatorcontrib><creatorcontrib>Trantírek, Lukáš</creatorcontrib><creatorcontrib>Zdráhal, Zbyněk</creatorcontrib><creatorcontrib>Elkalaf, Moustafa</creatorcontrib><creatorcontrib>Trnka, Jan</creatorcontrib><creatorcontrib>Souček, Karel</creatorcontrib><creatorcontrib>Rauch, Nora</creatorcontrib><creatorcontrib>Rauch, Jens</creatorcontrib><creatorcontrib>Kolch, Walter</creatorcontrib><creatorcontrib>Uldrijan, Stjepan</creatorcontrib><title>Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the
NRAS
or
BRAF
oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAF
V600E
‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAF
V600E
‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.
Synopsis
Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.
Metabolic stress induces CRAF/KSR dimerization in NRAS‐mutant cells, increasing ERK activity.
Metabolically stressed BRAF
V600E
‐mutant cells show an interaction of KSR with oncogenic BRAF.
High metabolic stress leads to the dissociation of mutant BRAF from KSR, reducing ERK activity.
Successful metabolic targeting strategies depend on the RAS/RAF mutational status.
Graphical Abstract
Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.</description><subject>14-3-3 Proteins - chemistry</subject><subject>14-3-3 Proteins - metabolism</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>cell cycle arrest</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Line, Tumor</subject><subject>cell survival</subject><subject>Deregulation</subject><subject>Dimerization</subject><subject>EMBO03</subject><subject>EMBO21</subject><subject>EMBO37</subject><subject>Energy metabolism</subject><subject>Enzyme Activation</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Glucose - metabolism</subject><subject>Glycolysis</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Humans</subject><subject>Melanoma</subject><subject>Melanoma - genetics</subject><subject>Melanoma - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolic pathways</subject><subject>metabolic stress</subject><subject>Metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oxygen Consumption</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>raf Kinases - chemistry</subject><subject>raf Kinases - genetics</subject><subject>raf Kinases - metabolism</subject><subject>Raf protein</subject><subject>RAF‐ERK signaling</subject><subject>Recombinant Fusion Proteins</subject><subject>Signaling</subject><subject>Stress, Physiological</subject><subject>Stresses</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1qFEEUhYugJDFm7U4a3LiZpH67u1wIMUxUkhCYGMiuqK6-PalQ3ZVUVUfGlY_gM_okls44TALi6l643zmcy0HoFcEHRFBBD6FvwgHFpOJcUL6Fdgkv5YSRqn622ikl1zvoRYy3GGMhq3ob7VBJS5ZVu-jyHJJuvLOmiClAjEWA-eh0glhMZ6eFNsk-2LQomkVh_JCCd84O8-L0cvbz-4_Z0UlxAwmCb20PwX7TyfrhJXreaRdhfzX30NXJ9Mvxp8nZxcfPx0dnEyMI45NGlxIIB4ZpRURLalEDpy2TpKRV17Wt7BrGSSkaJlitRcu1IaZjHAw1umnZHnq_9L0bmx5aAzmeduou2F6HhfLaqseXwd6ouX9QopKVLEk2eLsyCP5-hJhUb6MB5_QAfoyKZCxHxbjO6Jsn6K0fw5Dfy5RkkmImykwdLikTfIwBunUYgtWfwtTvwtS6sKx4vfnDmv_bUAbeLYGv1sHif35qev5htumOl-KYdcMcwkbqfwT6BevUtI0</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Verlande, Amandine</creator><creator>Krafčíková, Michaela</creator><creator>Potěšil, David</creator><creator>Trantírek, Lukáš</creator><creator>Zdráhal, Zbyněk</creator><creator>Elkalaf, Moustafa</creator><creator>Trnka, Jan</creator><creator>Souček, Karel</creator><creator>Rauch, Nora</creator><creator>Rauch, Jens</creator><creator>Kolch, Walter</creator><creator>Uldrijan, Stjepan</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5777-5016</orcidid><orcidid>https://orcid.org/0000-0001-8316-2539</orcidid><orcidid>https://orcid.org/0000-0001-6794-4119</orcidid></search><sort><creationdate>201802</creationdate><title>Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization</title><author>Verlande, Amandine ; Krafčíková, Michaela ; Potěšil, David ; Trantírek, Lukáš ; Zdráhal, Zbyněk ; Elkalaf, Moustafa ; Trnka, Jan ; Souček, Karel ; Rauch, Nora ; Rauch, Jens ; Kolch, Walter ; Uldrijan, Stjepan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5134-ba69e14e302715d1858e42d391627ffdd9fb34165b3538a5d4ac1cf34ec2cabd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14-3-3 Proteins - chemistry</topic><topic>14-3-3 Proteins - metabolism</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>cell cycle arrest</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Line, Tumor</topic><topic>cell survival</topic><topic>Deregulation</topic><topic>Dimerization</topic><topic>EMBO03</topic><topic>EMBO21</topic><topic>EMBO37</topic><topic>Energy metabolism</topic><topic>Enzyme Activation</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Glucose - metabolism</topic><topic>Glycolysis</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Humans</topic><topic>Melanoma</topic><topic>Melanoma - genetics</topic><topic>Melanoma - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolic pathways</topic><topic>metabolic stress</topic><topic>Metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oxygen Consumption</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>raf Kinases - chemistry</topic><topic>raf Kinases - genetics</topic><topic>raf Kinases - metabolism</topic><topic>Raf protein</topic><topic>RAF‐ERK signaling</topic><topic>Recombinant Fusion Proteins</topic><topic>Signaling</topic><topic>Stress, Physiological</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verlande, Amandine</creatorcontrib><creatorcontrib>Krafčíková, Michaela</creatorcontrib><creatorcontrib>Potěšil, David</creatorcontrib><creatorcontrib>Trantírek, Lukáš</creatorcontrib><creatorcontrib>Zdráhal, Zbyněk</creatorcontrib><creatorcontrib>Elkalaf, Moustafa</creatorcontrib><creatorcontrib>Trnka, Jan</creatorcontrib><creatorcontrib>Souček, Karel</creatorcontrib><creatorcontrib>Rauch, Nora</creatorcontrib><creatorcontrib>Rauch, Jens</creatorcontrib><creatorcontrib>Kolch, Walter</creatorcontrib><creatorcontrib>Uldrijan, Stjepan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verlande, Amandine</au><au>Krafčíková, Michaela</au><au>Potěšil, David</au><au>Trantírek, Lukáš</au><au>Zdráhal, Zbyněk</au><au>Elkalaf, Moustafa</au><au>Trnka, Jan</au><au>Souček, Karel</au><au>Rauch, Nora</au><au>Rauch, Jens</au><au>Kolch, Walter</au><au>Uldrijan, Stjepan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2018-02</date><risdate>2018</risdate><volume>19</volume><issue>2</issue><spage>320</spage><epage>336</epage><pages>320-336</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the
NRAS
or
BRAF
oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAF
V600E
‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAF
V600E
‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.
Synopsis
Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.
Metabolic stress induces CRAF/KSR dimerization in NRAS‐mutant cells, increasing ERK activity.
Metabolically stressed BRAF
V600E
‐mutant cells show an interaction of KSR with oncogenic BRAF.
High metabolic stress leads to the dissociation of mutant BRAF from KSR, reducing ERK activity.
Successful metabolic targeting strategies depend on the RAS/RAF mutational status.
Graphical Abstract
Somatic RAF/RAS mutations result in deregulated ERK signaling in melanomas. Metabolic stress impacts differently on ERK activation in BRAF‐ and NRAS‐mutant cells, indicating that targeting of energy metabolism is not a general therapeutic strategy for melanoma.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29263201</pmid><doi>10.15252/embr.201744524</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5777-5016</orcidid><orcidid>https://orcid.org/0000-0001-8316-2539</orcidid><orcidid>https://orcid.org/0000-0001-6794-4119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2018-02, Vol.19 (2), p.320-336 |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5797961 |
source | Springer Open Access |
subjects | 14-3-3 Proteins - chemistry 14-3-3 Proteins - metabolism Cancer Cell cycle cell cycle arrest Cell Cycle Checkpoints - genetics Cell Line, Tumor cell survival Deregulation Dimerization EMBO03 EMBO21 EMBO37 Energy metabolism Enzyme Activation Extracellular signal-regulated kinase Extracellular Signal-Regulated MAP Kinases - metabolism Glucose - metabolism Glycolysis GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism Humans Melanoma Melanoma - genetics Melanoma - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism Metabolic pathways metabolic stress Metabolism Mutants Mutation Oxygen Consumption Protein Kinases - chemistry Protein Kinases - genetics Protein Kinases - metabolism Protein Multimerization Proteins raf Kinases - chemistry raf Kinases - genetics raf Kinases - metabolism Raf protein RAF‐ERK signaling Recombinant Fusion Proteins Signaling Stress, Physiological Stresses |
title | Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20stress%20regulates%20ERK%20activity%20by%20controlling%20KSR%E2%80%90RAF%20heterodimerization&rft.jtitle=EMBO%20reports&rft.au=Verlande,%20Amandine&rft.date=2018-02&rft.volume=19&rft.issue=2&rft.spage=320&rft.epage=336&rft.pages=320-336&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201744524&rft_dat=%3Cproquest_C6C%3E1979513008%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993920356&rft_id=info:pmid/29263201&rfr_iscdi=true |