Mapping protein interactions of sodium channel NaV1.7 using epitope‐tagged gene‐targeted mice

The voltage‐gated sodium channel Na V 1.7 plays a critical role in pain pathways. We generated an epitope‐tagged Na V 1.7 mouse that showed normal pain behaviours to identify channel‐interacting proteins. Analysis of Na V 1.7 complexes affinity‐purified under native conditions by mass spectrometry r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2018-02, Vol.37 (3), p.427-445
Hauptverfasser: Kanellopoulos, Alexandros H, Koenig, Jennifer, Huang, Honglei, Pyrski, Martina, Millet, Queensta, Lolignier, Stéphane, Morohashi, Toru, Gossage, Samuel J, Jay, Maude, Linley, John E, Baskozos, Georgios, Kessler, Benedikt M, Cox, James J, Dolphin, Annette C, Zufall, Frank, Wood, John N, Zhao, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue 3
container_start_page 427
container_title The EMBO journal
container_volume 37
creator Kanellopoulos, Alexandros H
Koenig, Jennifer
Huang, Honglei
Pyrski, Martina
Millet, Queensta
Lolignier, Stéphane
Morohashi, Toru
Gossage, Samuel J
Jay, Maude
Linley, John E
Baskozos, Georgios
Kessler, Benedikt M
Cox, James J
Dolphin, Annette C
Zufall, Frank
Wood, John N
Zhao, Jing
description The voltage‐gated sodium channel Na V 1.7 plays a critical role in pain pathways. We generated an epitope‐tagged Na V 1.7 mouse that showed normal pain behaviours to identify channel‐interacting proteins. Analysis of Na V 1.7 complexes affinity‐purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo . The sodium channel β3 (Scn3b), rather than the β1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing‐response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel Na V 1.7 protein interactors including membrane‐trafficking protein synaptotagmin‐2 (Syt2), L‐type amino acid transporter 1 (Lat1) and transmembrane P24‐trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co‐immunoprecipitation (Co‐IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein‐regulated inducer of neurite outgrowth (Gprin1), an opioid receptor‐binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope‐tagged mouse should provide useful insights into the many functions now associated with the Na V 1.7 channel. Synopsis Numerous novel protein‐protein interactors of voltage‐gated sodium channel Na V 1.7 were identified using mouse genetics combined with proteomic approaches. An epitope‐tagged (TAP tag) Na V 1.7 knock‐in mouse line was generated to investigate protein‐protein interactions of Na V 1.7. The TAP tag was inserted at the C‐terminus of Na V 1.7. The TAP‐tagged Na V 1.7 knock‐in mice show a normal Na V 1.7 expression pattern and normal pain behaviour. Na V 1.7 complexes were isolated from neuronal tissues from TAP‐tagged Na V 1.7 mice using affinity purification. Two hundred and sixty‐seven protein interactors of Na V 1.7 were identified by mass spectrometry (LC‐MS/MS) analyses following affinity purification. Graphical Abstract Combining mouse genetics and proteomics reveals various new interactors of a voltage‐gated channel with key roles in pain perception, including direct links to opoid signalling and potential targets for better pain treatment.
doi_str_mv 10.15252/embj.201796692
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993021802</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2782-fa30ad424770c5e53cfec4f380b1827baf4fd91216884bf699b684bed31dde843</originalsourceid><addsrcrecordid>eNptkctOwzAQRS0EgvJYs43EOsWPJLZZIEFVXiqwAbaWk0yCq8YOTgLqjk_gG_kSAqkqkFjNXM3cMyNdhA4JHpOYxvQYqnQ-pphwmSSSbqARiRIcUszjTTTCNCFhRITcQbtNM8cYx4KTbbRDJWMxFXiE9K2ua2PLoPauBWMDY1vwOmuNs03giqBxuemqIHvW1sIiuNNPZMyDrvn2QG1aV8Pn-0eryxLyoAQ7KF9C2-vKZLCPtgq9aOBgVffQ48X0YXIVzu4vrydns7CmXNCw0AzrPKIR5ziLIWZZAVlUMIFTIihPdREVuSSUJEJEaZFImSZ9AzkjeQ4iYnvodODWXVpBnoFtvV6o2ptK-6Vy2qi_E2ueVeleVcwl41L0gKMVwLuXDppWzV3nbf-zIlIyTInAtN86GbbezAKWazzB6icQ9R2IWgeiprfnN2vVm_FgbnqfLcH_OvE_gH0BYzOTxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993021802</pqid></control><display><type>article</type><title>Mapping protein interactions of sodium channel NaV1.7 using epitope‐tagged gene‐targeted mice</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Kanellopoulos, Alexandros H ; Koenig, Jennifer ; Huang, Honglei ; Pyrski, Martina ; Millet, Queensta ; Lolignier, Stéphane ; Morohashi, Toru ; Gossage, Samuel J ; Jay, Maude ; Linley, John E ; Baskozos, Georgios ; Kessler, Benedikt M ; Cox, James J ; Dolphin, Annette C ; Zufall, Frank ; Wood, John N ; Zhao, Jing</creator><creatorcontrib>Kanellopoulos, Alexandros H ; Koenig, Jennifer ; Huang, Honglei ; Pyrski, Martina ; Millet, Queensta ; Lolignier, Stéphane ; Morohashi, Toru ; Gossage, Samuel J ; Jay, Maude ; Linley, John E ; Baskozos, Georgios ; Kessler, Benedikt M ; Cox, James J ; Dolphin, Annette C ; Zufall, Frank ; Wood, John N ; Zhao, Jing</creatorcontrib><description>The voltage‐gated sodium channel Na V 1.7 plays a critical role in pain pathways. We generated an epitope‐tagged Na V 1.7 mouse that showed normal pain behaviours to identify channel‐interacting proteins. Analysis of Na V 1.7 complexes affinity‐purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo . The sodium channel β3 (Scn3b), rather than the β1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing‐response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel Na V 1.7 protein interactors including membrane‐trafficking protein synaptotagmin‐2 (Syt2), L‐type amino acid transporter 1 (Lat1) and transmembrane P24‐trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co‐immunoprecipitation (Co‐IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein‐regulated inducer of neurite outgrowth (Gprin1), an opioid receptor‐binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope‐tagged mouse should provide useful insights into the many functions now associated with the Na V 1.7 channel. Synopsis Numerous novel protein‐protein interactors of voltage‐gated sodium channel Na V 1.7 were identified using mouse genetics combined with proteomic approaches. An epitope‐tagged (TAP tag) Na V 1.7 knock‐in mouse line was generated to investigate protein‐protein interactions of Na V 1.7. The TAP tag was inserted at the C‐terminus of Na V 1.7. The TAP‐tagged Na V 1.7 knock‐in mice show a normal Na V 1.7 expression pattern and normal pain behaviour. Na V 1.7 complexes were isolated from neuronal tissues from TAP‐tagged Na V 1.7 mice using affinity purification. Two hundred and sixty‐seven protein interactors of Na V 1.7 were identified by mass spectrometry (LC‐MS/MS) analyses following affinity purification. Graphical Abstract Combining mouse genetics and proteomics reveals various new interactors of a voltage‐gated channel with key roles in pain perception, including direct links to opoid signalling and potential targets for better pain treatment.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201796692</identifier><identifier>PMID: 29335280</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Affinity ; Amino acids ; Analgesics ; Axonogenesis ; C-Terminus ; EMBO24 ; EMBO27 ; Epitope mapping ; Gene mapping ; Genetics ; Immunoprecipitation ; Mass spectrometry ; Mass spectroscopy ; Mediator protein ; Membrane proteins ; Membrane trafficking ; Mice ; Narcotics ; NaV1.7 ; Opioid receptors ; Pain ; Peptide mapping ; Protein interaction ; Protein purification ; Protein transport ; Proteins ; protein–protein interactor ; Purification ; Resource ; Scientific imaging ; sensory neuron ; Signal transduction ; Signaling ; Sodium ; sodium channel ; Sodium channels (voltage-gated) ; Spectroscopy ; Synaptotagmin ; Synaptotagmin II</subject><ispartof>The EMBO journal, 2018-02, Vol.37 (3), p.427-445</ispartof><rights>The Authors. Published under the terms of the CC BY 4.0 license 2018</rights><rights>2018 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2018 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p2782-fa30ad424770c5e53cfec4f380b1827baf4fd91216884bf699b684bed31dde843</cites><orcidid>0000-0002-5751-178X ; 0000-0003-2587-1198 ; 0000-0001-9237-5878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793798/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793798/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids></links><search><creatorcontrib>Kanellopoulos, Alexandros H</creatorcontrib><creatorcontrib>Koenig, Jennifer</creatorcontrib><creatorcontrib>Huang, Honglei</creatorcontrib><creatorcontrib>Pyrski, Martina</creatorcontrib><creatorcontrib>Millet, Queensta</creatorcontrib><creatorcontrib>Lolignier, Stéphane</creatorcontrib><creatorcontrib>Morohashi, Toru</creatorcontrib><creatorcontrib>Gossage, Samuel J</creatorcontrib><creatorcontrib>Jay, Maude</creatorcontrib><creatorcontrib>Linley, John E</creatorcontrib><creatorcontrib>Baskozos, Georgios</creatorcontrib><creatorcontrib>Kessler, Benedikt M</creatorcontrib><creatorcontrib>Cox, James J</creatorcontrib><creatorcontrib>Dolphin, Annette C</creatorcontrib><creatorcontrib>Zufall, Frank</creatorcontrib><creatorcontrib>Wood, John N</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><title>Mapping protein interactions of sodium channel NaV1.7 using epitope‐tagged gene‐targeted mice</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><description>The voltage‐gated sodium channel Na V 1.7 plays a critical role in pain pathways. We generated an epitope‐tagged Na V 1.7 mouse that showed normal pain behaviours to identify channel‐interacting proteins. Analysis of Na V 1.7 complexes affinity‐purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo . The sodium channel β3 (Scn3b), rather than the β1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing‐response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel Na V 1.7 protein interactors including membrane‐trafficking protein synaptotagmin‐2 (Syt2), L‐type amino acid transporter 1 (Lat1) and transmembrane P24‐trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co‐immunoprecipitation (Co‐IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein‐regulated inducer of neurite outgrowth (Gprin1), an opioid receptor‐binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope‐tagged mouse should provide useful insights into the many functions now associated with the Na V 1.7 channel. Synopsis Numerous novel protein‐protein interactors of voltage‐gated sodium channel Na V 1.7 were identified using mouse genetics combined with proteomic approaches. An epitope‐tagged (TAP tag) Na V 1.7 knock‐in mouse line was generated to investigate protein‐protein interactions of Na V 1.7. The TAP tag was inserted at the C‐terminus of Na V 1.7. The TAP‐tagged Na V 1.7 knock‐in mice show a normal Na V 1.7 expression pattern and normal pain behaviour. Na V 1.7 complexes were isolated from neuronal tissues from TAP‐tagged Na V 1.7 mice using affinity purification. Two hundred and sixty‐seven protein interactors of Na V 1.7 were identified by mass spectrometry (LC‐MS/MS) analyses following affinity purification. Graphical Abstract Combining mouse genetics and proteomics reveals various new interactors of a voltage‐gated channel with key roles in pain perception, including direct links to opoid signalling and potential targets for better pain treatment.</description><subject>Affinity</subject><subject>Amino acids</subject><subject>Analgesics</subject><subject>Axonogenesis</subject><subject>C-Terminus</subject><subject>EMBO24</subject><subject>EMBO27</subject><subject>Epitope mapping</subject><subject>Gene mapping</subject><subject>Genetics</subject><subject>Immunoprecipitation</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mediator protein</subject><subject>Membrane proteins</subject><subject>Membrane trafficking</subject><subject>Mice</subject><subject>Narcotics</subject><subject>NaV1.7</subject><subject>Opioid receptors</subject><subject>Pain</subject><subject>Peptide mapping</subject><subject>Protein interaction</subject><subject>Protein purification</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>protein–protein interactor</subject><subject>Purification</subject><subject>Resource</subject><subject>Scientific imaging</subject><subject>sensory neuron</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Sodium</subject><subject>sodium channel</subject><subject>Sodium channels (voltage-gated)</subject><subject>Spectroscopy</subject><subject>Synaptotagmin</subject><subject>Synaptotagmin II</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><recordid>eNptkctOwzAQRS0EgvJYs43EOsWPJLZZIEFVXiqwAbaWk0yCq8YOTgLqjk_gG_kSAqkqkFjNXM3cMyNdhA4JHpOYxvQYqnQ-pphwmSSSbqARiRIcUszjTTTCNCFhRITcQbtNM8cYx4KTbbRDJWMxFXiE9K2ua2PLoPauBWMDY1vwOmuNs03giqBxuemqIHvW1sIiuNNPZMyDrvn2QG1aV8Pn-0eryxLyoAQ7KF9C2-vKZLCPtgq9aOBgVffQ48X0YXIVzu4vrydns7CmXNCw0AzrPKIR5ziLIWZZAVlUMIFTIihPdREVuSSUJEJEaZFImSZ9AzkjeQ4iYnvodODWXVpBnoFtvV6o2ptK-6Vy2qi_E2ueVeleVcwl41L0gKMVwLuXDppWzV3nbf-zIlIyTInAtN86GbbezAKWazzB6icQ9R2IWgeiprfnN2vVm_FgbnqfLcH_OvE_gH0BYzOTxQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Kanellopoulos, Alexandros H</creator><creator>Koenig, Jennifer</creator><creator>Huang, Honglei</creator><creator>Pyrski, Martina</creator><creator>Millet, Queensta</creator><creator>Lolignier, Stéphane</creator><creator>Morohashi, Toru</creator><creator>Gossage, Samuel J</creator><creator>Jay, Maude</creator><creator>Linley, John E</creator><creator>Baskozos, Georgios</creator><creator>Kessler, Benedikt M</creator><creator>Cox, James J</creator><creator>Dolphin, Annette C</creator><creator>Zufall, Frank</creator><creator>Wood, John N</creator><creator>Zhao, Jing</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5751-178X</orcidid><orcidid>https://orcid.org/0000-0003-2587-1198</orcidid><orcidid>https://orcid.org/0000-0001-9237-5878</orcidid></search><sort><creationdate>20180201</creationdate><title>Mapping protein interactions of sodium channel NaV1.7 using epitope‐tagged gene‐targeted mice</title><author>Kanellopoulos, Alexandros H ; Koenig, Jennifer ; Huang, Honglei ; Pyrski, Martina ; Millet, Queensta ; Lolignier, Stéphane ; Morohashi, Toru ; Gossage, Samuel J ; Jay, Maude ; Linley, John E ; Baskozos, Georgios ; Kessler, Benedikt M ; Cox, James J ; Dolphin, Annette C ; Zufall, Frank ; Wood, John N ; Zhao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2782-fa30ad424770c5e53cfec4f380b1827baf4fd91216884bf699b684bed31dde843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affinity</topic><topic>Amino acids</topic><topic>Analgesics</topic><topic>Axonogenesis</topic><topic>C-Terminus</topic><topic>EMBO24</topic><topic>EMBO27</topic><topic>Epitope mapping</topic><topic>Gene mapping</topic><topic>Genetics</topic><topic>Immunoprecipitation</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mediator protein</topic><topic>Membrane proteins</topic><topic>Membrane trafficking</topic><topic>Mice</topic><topic>Narcotics</topic><topic>NaV1.7</topic><topic>Opioid receptors</topic><topic>Pain</topic><topic>Peptide mapping</topic><topic>Protein interaction</topic><topic>Protein purification</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>protein–protein interactor</topic><topic>Purification</topic><topic>Resource</topic><topic>Scientific imaging</topic><topic>sensory neuron</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Sodium</topic><topic>sodium channel</topic><topic>Sodium channels (voltage-gated)</topic><topic>Spectroscopy</topic><topic>Synaptotagmin</topic><topic>Synaptotagmin II</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanellopoulos, Alexandros H</creatorcontrib><creatorcontrib>Koenig, Jennifer</creatorcontrib><creatorcontrib>Huang, Honglei</creatorcontrib><creatorcontrib>Pyrski, Martina</creatorcontrib><creatorcontrib>Millet, Queensta</creatorcontrib><creatorcontrib>Lolignier, Stéphane</creatorcontrib><creatorcontrib>Morohashi, Toru</creatorcontrib><creatorcontrib>Gossage, Samuel J</creatorcontrib><creatorcontrib>Jay, Maude</creatorcontrib><creatorcontrib>Linley, John E</creatorcontrib><creatorcontrib>Baskozos, Georgios</creatorcontrib><creatorcontrib>Kessler, Benedikt M</creatorcontrib><creatorcontrib>Cox, James J</creatorcontrib><creatorcontrib>Dolphin, Annette C</creatorcontrib><creatorcontrib>Zufall, Frank</creatorcontrib><creatorcontrib>Wood, John N</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanellopoulos, Alexandros H</au><au>Koenig, Jennifer</au><au>Huang, Honglei</au><au>Pyrski, Martina</au><au>Millet, Queensta</au><au>Lolignier, Stéphane</au><au>Morohashi, Toru</au><au>Gossage, Samuel J</au><au>Jay, Maude</au><au>Linley, John E</au><au>Baskozos, Georgios</au><au>Kessler, Benedikt M</au><au>Cox, James J</au><au>Dolphin, Annette C</au><au>Zufall, Frank</au><au>Wood, John N</au><au>Zhao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping protein interactions of sodium channel NaV1.7 using epitope‐tagged gene‐targeted mice</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>37</volume><issue>3</issue><spage>427</spage><epage>445</epage><pages>427-445</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>The voltage‐gated sodium channel Na V 1.7 plays a critical role in pain pathways. We generated an epitope‐tagged Na V 1.7 mouse that showed normal pain behaviours to identify channel‐interacting proteins. Analysis of Na V 1.7 complexes affinity‐purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo . The sodium channel β3 (Scn3b), rather than the β1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing‐response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel Na V 1.7 protein interactors including membrane‐trafficking protein synaptotagmin‐2 (Syt2), L‐type amino acid transporter 1 (Lat1) and transmembrane P24‐trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co‐immunoprecipitation (Co‐IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein‐regulated inducer of neurite outgrowth (Gprin1), an opioid receptor‐binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope‐tagged mouse should provide useful insights into the many functions now associated with the Na V 1.7 channel. Synopsis Numerous novel protein‐protein interactors of voltage‐gated sodium channel Na V 1.7 were identified using mouse genetics combined with proteomic approaches. An epitope‐tagged (TAP tag) Na V 1.7 knock‐in mouse line was generated to investigate protein‐protein interactions of Na V 1.7. The TAP tag was inserted at the C‐terminus of Na V 1.7. The TAP‐tagged Na V 1.7 knock‐in mice show a normal Na V 1.7 expression pattern and normal pain behaviour. Na V 1.7 complexes were isolated from neuronal tissues from TAP‐tagged Na V 1.7 mice using affinity purification. Two hundred and sixty‐seven protein interactors of Na V 1.7 were identified by mass spectrometry (LC‐MS/MS) analyses following affinity purification. Graphical Abstract Combining mouse genetics and proteomics reveals various new interactors of a voltage‐gated channel with key roles in pain perception, including direct links to opoid signalling and potential targets for better pain treatment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29335280</pmid><doi>10.15252/embj.201796692</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5751-178X</orcidid><orcidid>https://orcid.org/0000-0003-2587-1198</orcidid><orcidid>https://orcid.org/0000-0001-9237-5878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2018-02, Vol.37 (3), p.427-445
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793798
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects Affinity
Amino acids
Analgesics
Axonogenesis
C-Terminus
EMBO24
EMBO27
Epitope mapping
Gene mapping
Genetics
Immunoprecipitation
Mass spectrometry
Mass spectroscopy
Mediator protein
Membrane proteins
Membrane trafficking
Mice
Narcotics
NaV1.7
Opioid receptors
Pain
Peptide mapping
Protein interaction
Protein purification
Protein transport
Proteins
protein–protein interactor
Purification
Resource
Scientific imaging
sensory neuron
Signal transduction
Signaling
Sodium
sodium channel
Sodium channels (voltage-gated)
Spectroscopy
Synaptotagmin
Synaptotagmin II
title Mapping protein interactions of sodium channel NaV1.7 using epitope‐tagged gene‐targeted mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20protein%20interactions%20of%20sodium%20channel%20NaV1.7%20using%20epitope%E2%80%90tagged%20gene%E2%80%90targeted%20mice&rft.jtitle=The%20EMBO%20journal&rft.au=Kanellopoulos,%20Alexandros%20H&rft.date=2018-02-01&rft.volume=37&rft.issue=3&rft.spage=427&rft.epage=445&rft.pages=427-445&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.201796692&rft_dat=%3Cproquest_pubme%3E1993021802%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993021802&rft_id=info:pmid/29335280&rfr_iscdi=true