On inverse probability-weighted estimators in the presence of interference

We consider inference about the causal effect of a treatment or exposure in the presence of interference, i.e., when one individual's treatment affects the outcome of another individual. In the observational setting where the treatment assignment mechanism is not known, inverse probability-weig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2016-12, Vol.103 (4), p.829-842
Hauptverfasser: LIU, L., HUDGENS, M. G., BECKER-DREPS, S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 842
container_issue 4
container_start_page 829
container_title Biometrika
container_volume 103
creator LIU, L.
HUDGENS, M. G.
BECKER-DREPS, S.
description We consider inference about the causal effect of a treatment or exposure in the presence of interference, i.e., when one individual's treatment affects the outcome of another individual. In the observational setting where the treatment assignment mechanism is not known, inverse probability-weighted estimators have been proposed when individuals can be partitioned into groups such that there is no interference between individuals in different groups. Unfortunately this assumption, which is sometimes referred to as partial interference, may not hold, and moreover existing weighted estimators may have large variances. In this paper we consider weighted estimators that could be employed when interference is present. We first propose a generalized inverse probability-weighted estimator and two Hájek-type stabilized weighted estimators that allow any form of interference. We derive their asymptotic distributions and propose consistent variance estimators assuming partial interference. Empirical results show that one of the Hájek estimators can have substantially smaller finite-sample variance-than the other estimators. The different estimators are illustrated using data on the effects of rotavirus vaccination in Nicaragua.
doi_str_mv 10.1093/biomet/asw047
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26363489</jstor_id><sourcerecordid>26363489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3a3646c73dbf0a34b8ed3751e179199add2e6f3f1a1a9a9d2770de7b9a27a5603</originalsourceid><addsrcrecordid>eNpVkE1PAjEQhhujEUSPHjV79LLSbrstvZgY4mdIuOi56e7OQsmyxbZA-PeWLKKemuk8eWfmQeia4HuCJR0Wxi4hDLXfYiZOUJ8wzlKaE3yK-hhjnlLGWA9deL_Ylzzn56iXSZZlXGZ99D5tE9NuwHlIVs4WujCNCbt0C2Y2D1Al4INZ6mCdj1wS5nsMPLQlJLaOXwFcDW5fX6KzWjcerg7vAH0-P32MX9PJ9OVt_DhJS4ZlSKmmnPFS0KqosaasGEFFRU6ACEmk1FWVAa9pTTTRUssqEwJXIAqpM6FzjukAPXS5q3WxhKqENjjdqJWLe7qdstqo_53WzNXMblQuJOWjPAbcHQKc_VrHA9XS-BKaRrdg115lGJNoikse0bRDS2e9d1AfxxCs9v5V5191_iN_-3e3I_0jPAI3HbDw0elvn1NO2UjSb27Kjzc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001066696</pqid></control><display><type>article</type><title>On inverse probability-weighted estimators in the presence of interference</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>LIU, L. ; HUDGENS, M. G. ; BECKER-DREPS, S.</creator><creatorcontrib>LIU, L. ; HUDGENS, M. G. ; BECKER-DREPS, S.</creatorcontrib><description>We consider inference about the causal effect of a treatment or exposure in the presence of interference, i.e., when one individual's treatment affects the outcome of another individual. In the observational setting where the treatment assignment mechanism is not known, inverse probability-weighted estimators have been proposed when individuals can be partitioned into groups such that there is no interference between individuals in different groups. Unfortunately this assumption, which is sometimes referred to as partial interference, may not hold, and moreover existing weighted estimators may have large variances. In this paper we consider weighted estimators that could be employed when interference is present. We first propose a generalized inverse probability-weighted estimator and two Hájek-type stabilized weighted estimators that allow any form of interference. We derive their asymptotic distributions and propose consistent variance estimators assuming partial interference. Empirical results show that one of the Hájek estimators can have substantially smaller finite-sample variance-than the other estimators. The different estimators are illustrated using data on the effects of rotavirus vaccination in Nicaragua.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asw047</identifier><identifier>PMID: 29422692</identifier><language>eng</language><publisher>England: Biometrika Trust</publisher><ispartof>Biometrika, 2016-12, Vol.103 (4), p.829-842</ispartof><rights>2016 Biometrika Trust</rights><rights>2016 Biometrika Trust 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3a3646c73dbf0a34b8ed3751e179199add2e6f3f1a1a9a9d2770de7b9a27a5603</citedby><cites>FETCH-LOGICAL-c409t-3a3646c73dbf0a34b8ed3751e179199add2e6f3f1a1a9a9d2770de7b9a27a5603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26363489$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26363489$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29422692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIU, L.</creatorcontrib><creatorcontrib>HUDGENS, M. G.</creatorcontrib><creatorcontrib>BECKER-DREPS, S.</creatorcontrib><title>On inverse probability-weighted estimators in the presence of interference</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>We consider inference about the causal effect of a treatment or exposure in the presence of interference, i.e., when one individual's treatment affects the outcome of another individual. In the observational setting where the treatment assignment mechanism is not known, inverse probability-weighted estimators have been proposed when individuals can be partitioned into groups such that there is no interference between individuals in different groups. Unfortunately this assumption, which is sometimes referred to as partial interference, may not hold, and moreover existing weighted estimators may have large variances. In this paper we consider weighted estimators that could be employed when interference is present. We first propose a generalized inverse probability-weighted estimator and two Hájek-type stabilized weighted estimators that allow any form of interference. We derive their asymptotic distributions and propose consistent variance estimators assuming partial interference. Empirical results show that one of the Hájek estimators can have substantially smaller finite-sample variance-than the other estimators. The different estimators are illustrated using data on the effects of rotavirus vaccination in Nicaragua.</description><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkE1PAjEQhhujEUSPHjV79LLSbrstvZgY4mdIuOi56e7OQsmyxbZA-PeWLKKemuk8eWfmQeia4HuCJR0Wxi4hDLXfYiZOUJ8wzlKaE3yK-hhjnlLGWA9deL_Ylzzn56iXSZZlXGZ99D5tE9NuwHlIVs4WujCNCbt0C2Y2D1Al4INZ6mCdj1wS5nsMPLQlJLaOXwFcDW5fX6KzWjcerg7vAH0-P32MX9PJ9OVt_DhJS4ZlSKmmnPFS0KqosaasGEFFRU6ACEmk1FWVAa9pTTTRUssqEwJXIAqpM6FzjukAPXS5q3WxhKqENjjdqJWLe7qdstqo_53WzNXMblQuJOWjPAbcHQKc_VrHA9XS-BKaRrdg115lGJNoikse0bRDS2e9d1AfxxCs9v5V5191_iN_-3e3I_0jPAI3HbDw0elvn1NO2UjSb27Kjzc</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>LIU, L.</creator><creator>HUDGENS, M. G.</creator><creator>BECKER-DREPS, S.</creator><general>Biometrika Trust</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>On inverse probability-weighted estimators in the presence of interference</title><author>LIU, L. ; HUDGENS, M. G. ; BECKER-DREPS, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3a3646c73dbf0a34b8ed3751e179199add2e6f3f1a1a9a9d2770de7b9a27a5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, L.</creatorcontrib><creatorcontrib>HUDGENS, M. G.</creatorcontrib><creatorcontrib>BECKER-DREPS, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, L.</au><au>HUDGENS, M. G.</au><au>BECKER-DREPS, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On inverse probability-weighted estimators in the presence of interference</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>103</volume><issue>4</issue><spage>829</spage><epage>842</epage><pages>829-842</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>We consider inference about the causal effect of a treatment or exposure in the presence of interference, i.e., when one individual's treatment affects the outcome of another individual. In the observational setting where the treatment assignment mechanism is not known, inverse probability-weighted estimators have been proposed when individuals can be partitioned into groups such that there is no interference between individuals in different groups. Unfortunately this assumption, which is sometimes referred to as partial interference, may not hold, and moreover existing weighted estimators may have large variances. In this paper we consider weighted estimators that could be employed when interference is present. We first propose a generalized inverse probability-weighted estimator and two Hájek-type stabilized weighted estimators that allow any form of interference. We derive their asymptotic distributions and propose consistent variance estimators assuming partial interference. Empirical results show that one of the Hájek estimators can have substantially smaller finite-sample variance-than the other estimators. The different estimators are illustrated using data on the effects of rotavirus vaccination in Nicaragua.</abstract><cop>England</cop><pub>Biometrika Trust</pub><pmid>29422692</pmid><doi>10.1093/biomet/asw047</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2016-12, Vol.103 (4), p.829-842
issn 0006-3444
1464-3510
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793685
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
title On inverse probability-weighted estimators in the presence of interference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20inverse%20probability-weighted%20estimators%20in%20the%20presence%20of%20interference&rft.jtitle=Biometrika&rft.au=LIU,%20L.&rft.date=2016-12-01&rft.volume=103&rft.issue=4&rft.spage=829&rft.epage=842&rft.pages=829-842&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asw047&rft_dat=%3Cjstor_pubme%3E26363489%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001066696&rft_id=info:pmid/29422692&rft_jstor_id=26363489&rfr_iscdi=true