Surface Properties of Nanostructured, Porous ZnO Thin Films Prepared by Direct Current Reactive Magnetron Sputtering

In this paper, the results of detailed X-ray photoelectron spectroscopy (XPS) studies combined with atomic force microscopy (AFM) investigation concerning the local surface chemistry and morphology of nanostructured ZnO thin films are presented. They have been deposited by direct current (DC) reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2018-01, Vol.11 (1), p.131
Hauptverfasser: Kwoka, Monika, Lyson-Sypien, Barbara, Kulis, Anna, Maslyk, Monika, Borysiewicz, Michal Adam, Kaminska, Eliana, Szuber, Jacek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 131
container_title Materials
container_volume 11
creator Kwoka, Monika
Lyson-Sypien, Barbara
Kulis, Anna
Maslyk, Monika
Borysiewicz, Michal Adam
Kaminska, Eliana
Szuber, Jacek
description In this paper, the results of detailed X-ray photoelectron spectroscopy (XPS) studies combined with atomic force microscopy (AFM) investigation concerning the local surface chemistry and morphology of nanostructured ZnO thin films are presented. They have been deposited by direct current (DC) reactive magnetron sputtering under variable absolute Ar/O₂ flows (in sccm): 3:0.3; 8:0.8; 10:1; 15:1.5; 20:2, and 30:3, respectively. The XPS studies allowed us to obtain the information on: (1) the relative concentrations of main elements related to their surface nonstoichiometry; (2) the existence of undesired C surface contaminations; and (3) the various forms of surface bondings. It was found that only for the nanostructured ZnO thin films, deposited under extremely different conditions, i.e., for Ar/O₂ flow ratio equal to 3:0.3 and 30:3 (in sccm), respectively, an evident and the most pronounced difference had been observed. The same was for the case of AFM experiments. What is crucial, our experiments allowed us to find the correlation mainly between the lowest level of C contaminations and the local surface morphology of nanostructured ZnO thin films obtained at the highest Ar/O₂ ratio (30:3), for which the densely packaged (agglomerated) nanograins were observed, yielding a smaller surface area for undesired C adsorption. The obtained information can help in understanding the reason of still rather poor gas sensor characteristics of ZnO based nanostructures including the undesired ageing effect, being of a serious barrier for their potential application in the development of novel gas sensor devices.
doi_str_mv 10.3390/ma11010131
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002866814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-ab1e5fa730dcad613b9b15db6072299cd390a7760ab2be6b53940e41348e8f03</originalsourceid><addsrcrecordid>eNpVUU1PHDEMjVArQFsu_QFVpN4qliaT2czkUqlaPiVaUNlTL1GS8SxBu8ngJEj8e1JBKbUPtuRn-9mPkI-cHQmh2Net4ZxVF3yH7HOl5Jyrtn33Jt8jByndsWpC8L5Ru2SvUaJt-r7fJ_mm4Ggc0GuME2D2kGgc6U8TYspYXC4IwyG9jhhLor_DFV3d-kBP_Wabag9MptapfaTHHsFluiyIEDL9BcZl_wD0h1kHyBgDvZlKzoA-rD-Q96PZJDh4iTOyOj1ZLc_nl1dnF8vvl3PXMpnnxnJYjKYTbHBmkFxYZflisJJ1TaOUG-r9puskM7axIO1CqJZBy0XbQz8yMSPfnsdOxW5hcJUXmo2e0G8NPupovP6_EvytXscHveiUkPVHM_L5ZQDG-wIp67tYMFTKumGs6aXseVtRX55RDmNKCOPrBs70H430P40q-NNbTq_Qv4qIJwbWji8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002866814</pqid></control><display><type>article</type><title>Surface Properties of Nanostructured, Porous ZnO Thin Films Prepared by Direct Current Reactive Magnetron Sputtering</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Kwoka, Monika ; Lyson-Sypien, Barbara ; Kulis, Anna ; Maslyk, Monika ; Borysiewicz, Michal Adam ; Kaminska, Eliana ; Szuber, Jacek</creator><creatorcontrib>Kwoka, Monika ; Lyson-Sypien, Barbara ; Kulis, Anna ; Maslyk, Monika ; Borysiewicz, Michal Adam ; Kaminska, Eliana ; Szuber, Jacek</creatorcontrib><description>In this paper, the results of detailed X-ray photoelectron spectroscopy (XPS) studies combined with atomic force microscopy (AFM) investigation concerning the local surface chemistry and morphology of nanostructured ZnO thin films are presented. They have been deposited by direct current (DC) reactive magnetron sputtering under variable absolute Ar/O₂ flows (in sccm): 3:0.3; 8:0.8; 10:1; 15:1.5; 20:2, and 30:3, respectively. The XPS studies allowed us to obtain the information on: (1) the relative concentrations of main elements related to their surface nonstoichiometry; (2) the existence of undesired C surface contaminations; and (3) the various forms of surface bondings. It was found that only for the nanostructured ZnO thin films, deposited under extremely different conditions, i.e., for Ar/O₂ flow ratio equal to 3:0.3 and 30:3 (in sccm), respectively, an evident and the most pronounced difference had been observed. The same was for the case of AFM experiments. What is crucial, our experiments allowed us to find the correlation mainly between the lowest level of C contaminations and the local surface morphology of nanostructured ZnO thin films obtained at the highest Ar/O₂ ratio (30:3), for which the densely packaged (agglomerated) nanograins were observed, yielding a smaller surface area for undesired C adsorption. The obtained information can help in understanding the reason of still rather poor gas sensor characteristics of ZnO based nanostructures including the undesired ageing effect, being of a serious barrier for their potential application in the development of novel gas sensor devices.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma11010131</identifier><identifier>PMID: 29342888</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Atomic force microscopy ; Direct current ; Gas sensors ; Magnetron sputtering ; Morphology ; Nanostructure ; Photovoltaic cells ; Surface properties ; Thin films ; X ray photoelectron spectroscopy ; Zinc oxide</subject><ispartof>Materials, 2018-01, Vol.11 (1), p.131</ispartof><rights>Copyright MDPI AG 2018</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-ab1e5fa730dcad613b9b15db6072299cd390a7760ab2be6b53940e41348e8f03</citedby><cites>FETCH-LOGICAL-c406t-ab1e5fa730dcad613b9b15db6072299cd390a7760ab2be6b53940e41348e8f03</cites><orcidid>0000-0001-6197-1191 ; 0000-0002-7661-2412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793629/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793629/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29342888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwoka, Monika</creatorcontrib><creatorcontrib>Lyson-Sypien, Barbara</creatorcontrib><creatorcontrib>Kulis, Anna</creatorcontrib><creatorcontrib>Maslyk, Monika</creatorcontrib><creatorcontrib>Borysiewicz, Michal Adam</creatorcontrib><creatorcontrib>Kaminska, Eliana</creatorcontrib><creatorcontrib>Szuber, Jacek</creatorcontrib><title>Surface Properties of Nanostructured, Porous ZnO Thin Films Prepared by Direct Current Reactive Magnetron Sputtering</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this paper, the results of detailed X-ray photoelectron spectroscopy (XPS) studies combined with atomic force microscopy (AFM) investigation concerning the local surface chemistry and morphology of nanostructured ZnO thin films are presented. They have been deposited by direct current (DC) reactive magnetron sputtering under variable absolute Ar/O₂ flows (in sccm): 3:0.3; 8:0.8; 10:1; 15:1.5; 20:2, and 30:3, respectively. The XPS studies allowed us to obtain the information on: (1) the relative concentrations of main elements related to their surface nonstoichiometry; (2) the existence of undesired C surface contaminations; and (3) the various forms of surface bondings. It was found that only for the nanostructured ZnO thin films, deposited under extremely different conditions, i.e., for Ar/O₂ flow ratio equal to 3:0.3 and 30:3 (in sccm), respectively, an evident and the most pronounced difference had been observed. The same was for the case of AFM experiments. What is crucial, our experiments allowed us to find the correlation mainly between the lowest level of C contaminations and the local surface morphology of nanostructured ZnO thin films obtained at the highest Ar/O₂ ratio (30:3), for which the densely packaged (agglomerated) nanograins were observed, yielding a smaller surface area for undesired C adsorption. The obtained information can help in understanding the reason of still rather poor gas sensor characteristics of ZnO based nanostructures including the undesired ageing effect, being of a serious barrier for their potential application in the development of novel gas sensor devices.</description><subject>Atomic force microscopy</subject><subject>Direct current</subject><subject>Gas sensors</subject><subject>Magnetron sputtering</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>Surface properties</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVUU1PHDEMjVArQFsu_QFVpN4qliaT2czkUqlaPiVaUNlTL1GS8SxBu8ngJEj8e1JBKbUPtuRn-9mPkI-cHQmh2Net4ZxVF3yH7HOl5Jyrtn33Jt8jByndsWpC8L5Ru2SvUaJt-r7fJ_mm4Ggc0GuME2D2kGgc6U8TYspYXC4IwyG9jhhLor_DFV3d-kBP_Wabag9MptapfaTHHsFluiyIEDL9BcZl_wD0h1kHyBgDvZlKzoA-rD-Q96PZJDh4iTOyOj1ZLc_nl1dnF8vvl3PXMpnnxnJYjKYTbHBmkFxYZflisJJ1TaOUG-r9puskM7axIO1CqJZBy0XbQz8yMSPfnsdOxW5hcJUXmo2e0G8NPupovP6_EvytXscHveiUkPVHM_L5ZQDG-wIp67tYMFTKumGs6aXseVtRX55RDmNKCOPrBs70H430P40q-NNbTq_Qv4qIJwbWji8</recordid><startdate>20180114</startdate><enddate>20180114</enddate><creator>Kwoka, Monika</creator><creator>Lyson-Sypien, Barbara</creator><creator>Kulis, Anna</creator><creator>Maslyk, Monika</creator><creator>Borysiewicz, Michal Adam</creator><creator>Kaminska, Eliana</creator><creator>Szuber, Jacek</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6197-1191</orcidid><orcidid>https://orcid.org/0000-0002-7661-2412</orcidid></search><sort><creationdate>20180114</creationdate><title>Surface Properties of Nanostructured, Porous ZnO Thin Films Prepared by Direct Current Reactive Magnetron Sputtering</title><author>Kwoka, Monika ; Lyson-Sypien, Barbara ; Kulis, Anna ; Maslyk, Monika ; Borysiewicz, Michal Adam ; Kaminska, Eliana ; Szuber, Jacek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-ab1e5fa730dcad613b9b15db6072299cd390a7760ab2be6b53940e41348e8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Direct current</topic><topic>Gas sensors</topic><topic>Magnetron sputtering</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>Surface properties</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwoka, Monika</creatorcontrib><creatorcontrib>Lyson-Sypien, Barbara</creatorcontrib><creatorcontrib>Kulis, Anna</creatorcontrib><creatorcontrib>Maslyk, Monika</creatorcontrib><creatorcontrib>Borysiewicz, Michal Adam</creatorcontrib><creatorcontrib>Kaminska, Eliana</creatorcontrib><creatorcontrib>Szuber, Jacek</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwoka, Monika</au><au>Lyson-Sypien, Barbara</au><au>Kulis, Anna</au><au>Maslyk, Monika</au><au>Borysiewicz, Michal Adam</au><au>Kaminska, Eliana</au><au>Szuber, Jacek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Properties of Nanostructured, Porous ZnO Thin Films Prepared by Direct Current Reactive Magnetron Sputtering</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2018-01-14</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>131</spage><pages>131-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this paper, the results of detailed X-ray photoelectron spectroscopy (XPS) studies combined with atomic force microscopy (AFM) investigation concerning the local surface chemistry and morphology of nanostructured ZnO thin films are presented. They have been deposited by direct current (DC) reactive magnetron sputtering under variable absolute Ar/O₂ flows (in sccm): 3:0.3; 8:0.8; 10:1; 15:1.5; 20:2, and 30:3, respectively. The XPS studies allowed us to obtain the information on: (1) the relative concentrations of main elements related to their surface nonstoichiometry; (2) the existence of undesired C surface contaminations; and (3) the various forms of surface bondings. It was found that only for the nanostructured ZnO thin films, deposited under extremely different conditions, i.e., for Ar/O₂ flow ratio equal to 3:0.3 and 30:3 (in sccm), respectively, an evident and the most pronounced difference had been observed. The same was for the case of AFM experiments. What is crucial, our experiments allowed us to find the correlation mainly between the lowest level of C contaminations and the local surface morphology of nanostructured ZnO thin films obtained at the highest Ar/O₂ ratio (30:3), for which the densely packaged (agglomerated) nanograins were observed, yielding a smaller surface area for undesired C adsorption. The obtained information can help in understanding the reason of still rather poor gas sensor characteristics of ZnO based nanostructures including the undesired ageing effect, being of a serious barrier for their potential application in the development of novel gas sensor devices.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29342888</pmid><doi>10.3390/ma11010131</doi><orcidid>https://orcid.org/0000-0001-6197-1191</orcidid><orcidid>https://orcid.org/0000-0002-7661-2412</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2018-01, Vol.11 (1), p.131
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793629
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Atomic force microscopy
Direct current
Gas sensors
Magnetron sputtering
Morphology
Nanostructure
Photovoltaic cells
Surface properties
Thin films
X ray photoelectron spectroscopy
Zinc oxide
title Surface Properties of Nanostructured, Porous ZnO Thin Films Prepared by Direct Current Reactive Magnetron Sputtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Properties%20of%20Nanostructured,%20Porous%20ZnO%20Thin%20Films%20Prepared%20by%20Direct%20Current%20Reactive%20Magnetron%20Sputtering&rft.jtitle=Materials&rft.au=Kwoka,%20Monika&rft.date=2018-01-14&rft.volume=11&rft.issue=1&rft.spage=131&rft.pages=131-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma11010131&rft_dat=%3Cproquest_pubme%3E2002866814%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002866814&rft_id=info:pmid/29342888&rfr_iscdi=true