Joint sufficient dimension reduction and estimation of conditional and average treatment effects
The estimation of treatment effects based on observational data usually involves multiple confounders, and dimension reduction is often desirable and sometimes inevitable. We first clarify the definition of a central subspace that is relevant for the efficient estimation of average treatment effects...
Gespeichert in:
Veröffentlicht in: | Biometrika 2017-09, Vol.104 (3), p.583-596 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 3 |
container_start_page | 583 |
container_title | Biometrika |
container_volume | 104 |
creator | HUANG, MING-YUEH CHAN, KWUN CHUEN GARY |
description | The estimation of treatment effects based on observational data usually involves multiple confounders, and dimension reduction is often desirable and sometimes inevitable. We first clarify the definition of a central subspace that is relevant for the efficient estimation of average treatment effects. A criterion is then proposed to simultaneously estimate the structural dimension, the basis matrix of the joint central subspace, and the optimal bandwidth for estimating the conditional treatment effects. The method can easily be implemented by forward selection. Semiparametric efficient estimation of average treatment effects can be achieved by averaging the conditional treatment effects with a different data-adaptive bandwidth to ensure optimal undersmoothing. Asymptotic properties of the estimated joint central subspace and the corresponding estimator of average treatment effects are studied. The proposed methods are applied to a nutritional study, where the covariate dimension is reduced from 11 to an effective dimension of one. |
doi_str_mv | 10.1093/biomet/asx028 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26363747</jstor_id><sourcerecordid>26363747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-47f4ee929ea6e656c89e58a4cfa3d2a081c0a9b8e846a683eceb2216e81524783</originalsourceid><addsrcrecordid>eNpVkUFv1TAQhC1ERR-FI0dQjlxC7XjjOBckVBXaqhIXOJt9zrq4SuJiOxX8-zpNKfTkXc2n8ayGsTeCfxC8l8d7HybKx5h-80Y_YzsBCmrZCv6c7TjnqpYAcMhepnS9rqpVL9hh04PkXMKO_bgIfs5VWpzz1lMZBz_RnHyYq0jDYvM64TxUlLKf8H4NrrJhHvy64Hiv4i1FvKIqR8I8rT7kHNmcXrEDh2Oi1w_vEfv--fTbyVl9-fXL-cmny9pC1-YaOgdEfdMTKiohre6p1QjWoRwa5FpYjv1ekwaFSkuytG8aoUiLtoFOyyP2cfO9WfYTDbZEiDiam1hCxz8moDdPldn_NFfh1rRdL6HnxeD9g0EMv5ZyrZl8sjSOOFNYkmk4F8Bb6KCg9YbaGFKK5B6_EdysrZitFbO1Uvh3_2d7pP_WUIC3G3Cdcoj_dCWV7KCTdzASl3U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001405474</pqid></control><display><type>article</type><title>Joint sufficient dimension reduction and estimation of conditional and average treatment effects</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>JSTOR Mathematics & Statistics</source><creator>HUANG, MING-YUEH ; CHAN, KWUN CHUEN GARY</creator><creatorcontrib>HUANG, MING-YUEH ; CHAN, KWUN CHUEN GARY</creatorcontrib><description>The estimation of treatment effects based on observational data usually involves multiple confounders, and dimension reduction is often desirable and sometimes inevitable. We first clarify the definition of a central subspace that is relevant for the efficient estimation of average treatment effects. A criterion is then proposed to simultaneously estimate the structural dimension, the basis matrix of the joint central subspace, and the optimal bandwidth for estimating the conditional treatment effects. The method can easily be implemented by forward selection. Semiparametric efficient estimation of average treatment effects can be achieved by averaging the conditional treatment effects with a different data-adaptive bandwidth to ensure optimal undersmoothing. Asymptotic properties of the estimated joint central subspace and the corresponding estimator of average treatment effects are studied. The proposed methods are applied to a nutritional study, where the covariate dimension is reduced from 11 to an effective dimension of one.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asx028</identifier><identifier>PMID: 29430034</identifier><language>eng</language><publisher>England: Biometrika Trust</publisher><ispartof>Biometrika, 2017-09, Vol.104 (3), p.583-596</ispartof><rights>2017 Biometrika Trust</rights><rights>2017 Biometrika Trust 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-47f4ee929ea6e656c89e58a4cfa3d2a081c0a9b8e846a683eceb2216e81524783</citedby><cites>FETCH-LOGICAL-c475t-47f4ee929ea6e656c89e58a4cfa3d2a081c0a9b8e846a683eceb2216e81524783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26363747$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26363747$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29430034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HUANG, MING-YUEH</creatorcontrib><creatorcontrib>CHAN, KWUN CHUEN GARY</creatorcontrib><title>Joint sufficient dimension reduction and estimation of conditional and average treatment effects</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>The estimation of treatment effects based on observational data usually involves multiple confounders, and dimension reduction is often desirable and sometimes inevitable. We first clarify the definition of a central subspace that is relevant for the efficient estimation of average treatment effects. A criterion is then proposed to simultaneously estimate the structural dimension, the basis matrix of the joint central subspace, and the optimal bandwidth for estimating the conditional treatment effects. The method can easily be implemented by forward selection. Semiparametric efficient estimation of average treatment effects can be achieved by averaging the conditional treatment effects with a different data-adaptive bandwidth to ensure optimal undersmoothing. Asymptotic properties of the estimated joint central subspace and the corresponding estimator of average treatment effects are studied. The proposed methods are applied to a nutritional study, where the covariate dimension is reduced from 11 to an effective dimension of one.</description><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkUFv1TAQhC1ERR-FI0dQjlxC7XjjOBckVBXaqhIXOJt9zrq4SuJiOxX8-zpNKfTkXc2n8ayGsTeCfxC8l8d7HybKx5h-80Y_YzsBCmrZCv6c7TjnqpYAcMhepnS9rqpVL9hh04PkXMKO_bgIfs5VWpzz1lMZBz_RnHyYq0jDYvM64TxUlLKf8H4NrrJhHvy64Hiv4i1FvKIqR8I8rT7kHNmcXrEDh2Oi1w_vEfv--fTbyVl9-fXL-cmny9pC1-YaOgdEfdMTKiohre6p1QjWoRwa5FpYjv1ekwaFSkuytG8aoUiLtoFOyyP2cfO9WfYTDbZEiDiam1hCxz8moDdPldn_NFfh1rRdL6HnxeD9g0EMv5ZyrZl8sjSOOFNYkmk4F8Bb6KCg9YbaGFKK5B6_EdysrZitFbO1Uvh3_2d7pP_WUIC3G3Cdcoj_dCWV7KCTdzASl3U</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>HUANG, MING-YUEH</creator><creator>CHAN, KWUN CHUEN GARY</creator><general>Biometrika Trust</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>Joint sufficient dimension reduction and estimation of conditional and average treatment effects</title><author>HUANG, MING-YUEH ; CHAN, KWUN CHUEN GARY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-47f4ee929ea6e656c89e58a4cfa3d2a081c0a9b8e846a683eceb2216e81524783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUANG, MING-YUEH</creatorcontrib><creatorcontrib>CHAN, KWUN CHUEN GARY</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HUANG, MING-YUEH</au><au>CHAN, KWUN CHUEN GARY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint sufficient dimension reduction and estimation of conditional and average treatment effects</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>104</volume><issue>3</issue><spage>583</spage><epage>596</epage><pages>583-596</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>The estimation of treatment effects based on observational data usually involves multiple confounders, and dimension reduction is often desirable and sometimes inevitable. We first clarify the definition of a central subspace that is relevant for the efficient estimation of average treatment effects. A criterion is then proposed to simultaneously estimate the structural dimension, the basis matrix of the joint central subspace, and the optimal bandwidth for estimating the conditional treatment effects. The method can easily be implemented by forward selection. Semiparametric efficient estimation of average treatment effects can be achieved by averaging the conditional treatment effects with a different data-adaptive bandwidth to ensure optimal undersmoothing. Asymptotic properties of the estimated joint central subspace and the corresponding estimator of average treatment effects are studied. The proposed methods are applied to a nutritional study, where the covariate dimension is reduced from 11 to an effective dimension of one.</abstract><cop>England</cop><pub>Biometrika Trust</pub><pmid>29430034</pmid><doi>10.1093/biomet/asx028</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2017-09, Vol.104 (3), p.583-596 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5793490 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); JSTOR Mathematics & Statistics |
title | Joint sufficient dimension reduction and estimation of conditional and average treatment effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20sufficient%20dimension%20reduction%20and%20estimation%20of%20conditional%20and%20average%20treatment%20effects&rft.jtitle=Biometrika&rft.au=HUANG,%20MING-YUEH&rft.date=2017-09-01&rft.volume=104&rft.issue=3&rft.spage=583&rft.epage=596&rft.pages=583-596&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asx028&rft_dat=%3Cjstor_pubme%3E26363747%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001405474&rft_id=info:pmid/29430034&rft_jstor_id=26363747&rfr_iscdi=true |