Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor α in Adult Female Mice

Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2018-01, Vol.38 (5), p.1061-1072
Hauptverfasser: Wang, Luhong, Burger, Laura L, Greenwald-Yarnell, Megan L, Myers, Jr, Martin G, Moenter, Suzanne M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1072
container_issue 5
container_start_page 1061
container_title The Journal of neuroscience
container_volume 38
creator Wang, Luhong
Burger, Laura L
Greenwald-Yarnell, Megan L
Myers, Jr, Martin G
Moenter, Suzanne M
description Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol. The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.
doi_str_mv 10.1523/JNEUROSCI.2428-17.2017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5792470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961856110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-5890a2668cc6adb6d4ce5ac411f02892af13be28f5754c64f54c0bf88d2568183</originalsourceid><addsrcrecordid>eNpdkd9uFCEUxonR2LX6Cg2JN97MCiwDzI1Js27brbVNantNGIaZpWGGKTAm-ya-hi_iM8n2z8aaEEjO9ztfzuED4AijOS7J4vP55er2-urHcj0nlIgC8zlBmL8Cs6xWBaEIvwYzRDgqGOX0ALyL8Q4hxDP0FhyQCmOKOJ2BX6duSqpXyYTOangT1BB7G6P1A0wenm1HnzbKqT6L33J9NGOyA7w0U_BDhOsIv9q2NcEMySrntvDadJPLdg2st3AVU1CN9Q6mTfBTt3mo-M4MmdPZygf45zfMhsfN5BI8Mb1yBn632rwHb1rlovnw9B6C25PVzfKsuLg6XS-PLwpNKUlFKSqkCGNCa6aamjVUm1JpinGLiKiIavGiNkS0JS-pZrTNN6pbIRpSMoHF4hB8efQdp7o3jc6LBOXkGGyvwlZ6ZeVLZbAb2fmfsuQVoRxlg09PBsHfTyYmmf9PG-fUYPwUJa4YFiXDeId-_A-981MY8nqSoIpSUeWTKfZI6eBjDKbdD4OR3IUv9-HLXfgSc7kLPzce_bvKvu057cVfBi2wSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094489489</pqid></control><display><type>article</type><title>Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor α in Adult Female Mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Luhong ; Burger, Laura L ; Greenwald-Yarnell, Megan L ; Myers, Jr, Martin G ; Moenter, Suzanne M</creator><creatorcontrib>Wang, Luhong ; Burger, Laura L ; Greenwald-Yarnell, Megan L ; Myers, Jr, Martin G ; Moenter, Suzanne M</creatorcontrib><description>Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol. The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2428-17.2017</identifier><identifier>PMID: 29114074</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>17β-Estradiol ; Animals ; Arcuate Nucleus of Hypothalamus - physiology ; Circuits ; Clonal deletion ; Dynorphins - pharmacology ; ERRalpha Estrogen-Related Receptor ; Estradiol - pharmacology ; Estrogens ; Feedback ; Female ; Firing rate ; Gene Expression Regulation - genetics ; Gene Expression Regulation - physiology ; Glutamatergic transmission ; Glutamates - physiology ; Glutamic acid receptors (ionotropic) ; Gonadotropin-releasing hormone ; Gonadotropins ; Hypothalamus ; Hypothalamus - cytology ; Hypothalamus - drug effects ; Hypothalamus - physiology ; Kiss1 protein ; Kisspeptins - physiology ; Luteinizing hormone ; Luteinizing Hormone - physiology ; Mice ; Midline Thalamic Nuclei - physiology ; Negative feedback ; Neurons ; Neurons - drug effects ; Neurons - physiology ; Ovulation ; Pituitary (anterior) ; Pituitary Gland - drug effects ; Pituitary Gland - physiology ; Positive feedback ; Proestrus - physiology ; Receptors ; Receptors, Estrogen - drug effects ; Receptors, Ionotropic Glutamate - drug effects ; Receptors, Ionotropic Glutamate - physiology ; Rodents ; Sex hormones ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2018-01, Vol.38 (5), p.1061-1072</ispartof><rights>Copyright © 2018 the authors 0270-6474/18/381061-12$15.00/0.</rights><rights>Copyright Society for Neuroscience Jan 31, 2018</rights><rights>Copyright © 2018 the authors 0270-6474/18/381061-12$15.00/0 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-5890a2668cc6adb6d4ce5ac411f02892af13be28f5754c64f54c0bf88d2568183</citedby><cites>FETCH-LOGICAL-c442t-5890a2668cc6adb6d4ce5ac411f02892af13be28f5754c64f54c0bf88d2568183</cites><orcidid>0000-0002-1085-841X ; 0000-0001-9468-2046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792470/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792470/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29114074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Luhong</creatorcontrib><creatorcontrib>Burger, Laura L</creatorcontrib><creatorcontrib>Greenwald-Yarnell, Megan L</creatorcontrib><creatorcontrib>Myers, Jr, Martin G</creatorcontrib><creatorcontrib>Moenter, Suzanne M</creatorcontrib><title>Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor α in Adult Female Mice</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol. The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.</description><subject>17β-Estradiol</subject><subject>Animals</subject><subject>Arcuate Nucleus of Hypothalamus - physiology</subject><subject>Circuits</subject><subject>Clonal deletion</subject><subject>Dynorphins - pharmacology</subject><subject>ERRalpha Estrogen-Related Receptor</subject><subject>Estradiol - pharmacology</subject><subject>Estrogens</subject><subject>Feedback</subject><subject>Female</subject><subject>Firing rate</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Expression Regulation - physiology</subject><subject>Glutamatergic transmission</subject><subject>Glutamates - physiology</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Gonadotropin-releasing hormone</subject><subject>Gonadotropins</subject><subject>Hypothalamus</subject><subject>Hypothalamus - cytology</subject><subject>Hypothalamus - drug effects</subject><subject>Hypothalamus - physiology</subject><subject>Kiss1 protein</subject><subject>Kisspeptins - physiology</subject><subject>Luteinizing hormone</subject><subject>Luteinizing Hormone - physiology</subject><subject>Mice</subject><subject>Midline Thalamic Nuclei - physiology</subject><subject>Negative feedback</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Ovulation</subject><subject>Pituitary (anterior)</subject><subject>Pituitary Gland - drug effects</subject><subject>Pituitary Gland - physiology</subject><subject>Positive feedback</subject><subject>Proestrus - physiology</subject><subject>Receptors</subject><subject>Receptors, Estrogen - drug effects</subject><subject>Receptors, Ionotropic Glutamate - drug effects</subject><subject>Receptors, Ionotropic Glutamate - physiology</subject><subject>Rodents</subject><subject>Sex hormones</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd9uFCEUxonR2LX6Cg2JN97MCiwDzI1Js27brbVNantNGIaZpWGGKTAm-ya-hi_iM8n2z8aaEEjO9ztfzuED4AijOS7J4vP55er2-urHcj0nlIgC8zlBmL8Cs6xWBaEIvwYzRDgqGOX0ALyL8Q4hxDP0FhyQCmOKOJ2BX6duSqpXyYTOangT1BB7G6P1A0wenm1HnzbKqT6L33J9NGOyA7w0U_BDhOsIv9q2NcEMySrntvDadJPLdg2st3AVU1CN9Q6mTfBTt3mo-M4MmdPZygf45zfMhsfN5BI8Mb1yBn632rwHb1rlovnw9B6C25PVzfKsuLg6XS-PLwpNKUlFKSqkCGNCa6aamjVUm1JpinGLiKiIavGiNkS0JS-pZrTNN6pbIRpSMoHF4hB8efQdp7o3jc6LBOXkGGyvwlZ6ZeVLZbAb2fmfsuQVoRxlg09PBsHfTyYmmf9PG-fUYPwUJa4YFiXDeId-_A-981MY8nqSoIpSUeWTKfZI6eBjDKbdD4OR3IUv9-HLXfgSc7kLPzce_bvKvu057cVfBi2wSQ</recordid><startdate>20180131</startdate><enddate>20180131</enddate><creator>Wang, Luhong</creator><creator>Burger, Laura L</creator><creator>Greenwald-Yarnell, Megan L</creator><creator>Myers, Jr, Martin G</creator><creator>Moenter, Suzanne M</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1085-841X</orcidid><orcidid>https://orcid.org/0000-0001-9468-2046</orcidid></search><sort><creationdate>20180131</creationdate><title>Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor α in Adult Female Mice</title><author>Wang, Luhong ; Burger, Laura L ; Greenwald-Yarnell, Megan L ; Myers, Jr, Martin G ; Moenter, Suzanne M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-5890a2668cc6adb6d4ce5ac411f02892af13be28f5754c64f54c0bf88d2568183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>17β-Estradiol</topic><topic>Animals</topic><topic>Arcuate Nucleus of Hypothalamus - physiology</topic><topic>Circuits</topic><topic>Clonal deletion</topic><topic>Dynorphins - pharmacology</topic><topic>ERRalpha Estrogen-Related Receptor</topic><topic>Estradiol - pharmacology</topic><topic>Estrogens</topic><topic>Feedback</topic><topic>Female</topic><topic>Firing rate</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Expression Regulation - physiology</topic><topic>Glutamatergic transmission</topic><topic>Glutamates - physiology</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Gonadotropin-releasing hormone</topic><topic>Gonadotropins</topic><topic>Hypothalamus</topic><topic>Hypothalamus - cytology</topic><topic>Hypothalamus - drug effects</topic><topic>Hypothalamus - physiology</topic><topic>Kiss1 protein</topic><topic>Kisspeptins - physiology</topic><topic>Luteinizing hormone</topic><topic>Luteinizing Hormone - physiology</topic><topic>Mice</topic><topic>Midline Thalamic Nuclei - physiology</topic><topic>Negative feedback</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Ovulation</topic><topic>Pituitary (anterior)</topic><topic>Pituitary Gland - drug effects</topic><topic>Pituitary Gland - physiology</topic><topic>Positive feedback</topic><topic>Proestrus - physiology</topic><topic>Receptors</topic><topic>Receptors, Estrogen - drug effects</topic><topic>Receptors, Ionotropic Glutamate - drug effects</topic><topic>Receptors, Ionotropic Glutamate - physiology</topic><topic>Rodents</topic><topic>Sex hormones</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Luhong</creatorcontrib><creatorcontrib>Burger, Laura L</creatorcontrib><creatorcontrib>Greenwald-Yarnell, Megan L</creatorcontrib><creatorcontrib>Myers, Jr, Martin G</creatorcontrib><creatorcontrib>Moenter, Suzanne M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Luhong</au><au>Burger, Laura L</au><au>Greenwald-Yarnell, Megan L</au><au>Myers, Jr, Martin G</au><au>Moenter, Suzanne M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor α in Adult Female Mice</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2018-01-31</date><risdate>2018</risdate><volume>38</volume><issue>5</issue><spage>1061</spage><epage>1072</epage><pages>1061-1072</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol. The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>29114074</pmid><doi>10.1523/JNEUROSCI.2428-17.2017</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1085-841X</orcidid><orcidid>https://orcid.org/0000-0001-9468-2046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2018-01, Vol.38 (5), p.1061-1072
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5792470
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 17β-Estradiol
Animals
Arcuate Nucleus of Hypothalamus - physiology
Circuits
Clonal deletion
Dynorphins - pharmacology
ERRalpha Estrogen-Related Receptor
Estradiol - pharmacology
Estrogens
Feedback
Female
Firing rate
Gene Expression Regulation - genetics
Gene Expression Regulation - physiology
Glutamatergic transmission
Glutamates - physiology
Glutamic acid receptors (ionotropic)
Gonadotropin-releasing hormone
Gonadotropins
Hypothalamus
Hypothalamus - cytology
Hypothalamus - drug effects
Hypothalamus - physiology
Kiss1 protein
Kisspeptins - physiology
Luteinizing hormone
Luteinizing Hormone - physiology
Mice
Midline Thalamic Nuclei - physiology
Negative feedback
Neurons
Neurons - drug effects
Neurons - physiology
Ovulation
Pituitary (anterior)
Pituitary Gland - drug effects
Pituitary Gland - physiology
Positive feedback
Proestrus - physiology
Receptors
Receptors, Estrogen - drug effects
Receptors, Ionotropic Glutamate - drug effects
Receptors, Ionotropic Glutamate - physiology
Rodents
Sex hormones
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
title Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor α in Adult Female Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glutamatergic%20Transmission%20to%20Hypothalamic%20Kisspeptin%20Neurons%20Is%20Differentially%20Regulated%20by%20Estradiol%20through%20Estrogen%20Receptor%20%CE%B1%20in%20Adult%20Female%20Mice&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Wang,%20Luhong&rft.date=2018-01-31&rft.volume=38&rft.issue=5&rft.spage=1061&rft.epage=1072&rft.pages=1061-1072&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2428-17.2017&rft_dat=%3Cproquest_pubme%3E1961856110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094489489&rft_id=info:pmid/29114074&rfr_iscdi=true