General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins

Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of virology 2018-02, Vol.92 (4)
Hauptverfasser: Wagner, Jonathan M, Christensen, Devin E, Bhattacharya, Akash, Dawidziak, Daria M, Roganowicz, Marcin D, Wan, Yueping, Pumroy, Ruth A, Demeler, Borries, Ivanov, Dmitri N, Ganser-Pornillos, Barbie K, Sundquist, Wesley I, Pornillos, Owen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of virology
container_volume 92
creator Wagner, Jonathan M
Christensen, Devin E
Bhattacharya, Akash
Dawidziak, Daria M
Roganowicz, Marcin D
Wan, Yueping
Pumroy, Ruth A
Demeler, Borries
Ivanov, Dmitri N
Ganser-Pornillos, Barbie K
Sundquist, Wesley I
Pornillos, Owen
description Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly through its cyclophilin A domain and therefore was thought to act independently of higher-order assembly. Here, we show that TRIMCyp shares the assembly properties of TRIM5α and that both forms of TRIM5 use the same mechanism of hexagonal lattice formation to promote viral recognition and restriction.
doi_str_mv 10.1128/JVI.01563-17
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5790955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970632743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-590aa91a17b7737f9a6bae2ce98829ffab1bf9ffdbbde591866d1d025e8bb8c93</originalsourceid><addsrcrecordid>eNpVkcFrFDEUxoModq3ePMvgyYPT5mUmk-QiyKJ1S0tLqeItJJk3bWQ2WZNsof-9Wbctenrwvh_f-3gfIW-BHgEweXz6Y3VEgQ9dC-IZWQBVsuUc-udkQSljLe_kzwPyKudflELfD_1LcsAUSMF7uiCrEwyYzNycxxHnZoqpucKS4p3fLZdmk_3YXJpSMIWquHgTfPExNPa-ub5anfPmMsWCPuTX5MVk5oxvHuYh-f71y_XyW3t2cbJafj5rXQ9QWq6oMQoMCCtEJyZlBmuQOVRSMjVNxoKd6hytHZHXnMMwwkgZR2mtdKo7JJ_2vputXePoMJQaVW-SX5t0r6Px-n8l-Ft9E-80F4oqzqvB-71BzMXr7HxBd-tiCOiKhvogyboKfXi4kuLvLeai1z47nGcTMG6zBiXo0DHR79CPe9SlmHPC6SkLUL2rSNeK9N-KNIiKv_s3_xP82En3B5YGjRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970632743</pqid></control><display><type>article</type><title>General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wagner, Jonathan M ; Christensen, Devin E ; Bhattacharya, Akash ; Dawidziak, Daria M ; Roganowicz, Marcin D ; Wan, Yueping ; Pumroy, Ruth A ; Demeler, Borries ; Ivanov, Dmitri N ; Ganser-Pornillos, Barbie K ; Sundquist, Wesley I ; Pornillos, Owen</creator><contributor>Kirchhoff, Frank</contributor><creatorcontrib>Wagner, Jonathan M ; Christensen, Devin E ; Bhattacharya, Akash ; Dawidziak, Daria M ; Roganowicz, Marcin D ; Wan, Yueping ; Pumroy, Ruth A ; Demeler, Borries ; Ivanov, Dmitri N ; Ganser-Pornillos, Barbie K ; Sundquist, Wesley I ; Pornillos, Owen ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) ; Kirchhoff, Frank</creatorcontrib><description>Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( of &gt;1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly through its cyclophilin A domain and therefore was thought to act independently of higher-order assembly. Here, we show that TRIMCyp shares the assembly properties of TRIM5α and that both forms of TRIM5 use the same mechanism of hexagonal lattice formation to promote viral recognition and restriction.</description><identifier>ISSN: 0022-538X</identifier><identifier>EISSN: 1098-5514</identifier><identifier>DOI: 10.1128/JVI.01563-17</identifier><identifier>PMID: 29187540</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Amino Acid Sequence ; Animals ; Antiviral Restriction Factors ; Aotidae ; Capsid - metabolism ; Capsid Proteins - metabolism ; Capsid Proteins - ultrastructure ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; HeLa Cells ; HIV-1 - genetics ; HIV-1 - metabolism ; Humans ; Macaca mulatta ; Protein Domains ; Protein Multimerization ; Proteins - genetics ; Proteins - metabolism ; Tripartite Motif Proteins ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Virus-Cell Interactions</subject><ispartof>Journal of virology, 2018-02, Vol.92 (4)</ispartof><rights>Copyright © 2018 American Society for Microbiology.</rights><rights>Copyright © 2018 American Society for Microbiology. 2018 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-590aa91a17b7737f9a6bae2ce98829ffab1bf9ffdbbde591866d1d025e8bb8c93</citedby><cites>FETCH-LOGICAL-c411t-590aa91a17b7737f9a6bae2ce98829ffab1bf9ffdbbde591866d1d025e8bb8c93</cites><orcidid>0000-0001-9056-5002 ; 0000000190565002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790955/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790955/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29187540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1464823$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Kirchhoff, Frank</contributor><creatorcontrib>Wagner, Jonathan M</creatorcontrib><creatorcontrib>Christensen, Devin E</creatorcontrib><creatorcontrib>Bhattacharya, Akash</creatorcontrib><creatorcontrib>Dawidziak, Daria M</creatorcontrib><creatorcontrib>Roganowicz, Marcin D</creatorcontrib><creatorcontrib>Wan, Yueping</creatorcontrib><creatorcontrib>Pumroy, Ruth A</creatorcontrib><creatorcontrib>Demeler, Borries</creatorcontrib><creatorcontrib>Ivanov, Dmitri N</creatorcontrib><creatorcontrib>Ganser-Pornillos, Barbie K</creatorcontrib><creatorcontrib>Sundquist, Wesley I</creatorcontrib><creatorcontrib>Pornillos, Owen</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins</title><title>Journal of virology</title><addtitle>J Virol</addtitle><description>Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( of &gt;1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly through its cyclophilin A domain and therefore was thought to act independently of higher-order assembly. Here, we show that TRIMCyp shares the assembly properties of TRIM5α and that both forms of TRIM5 use the same mechanism of hexagonal lattice formation to promote viral recognition and restriction.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antiviral Restriction Factors</subject><subject>Aotidae</subject><subject>Capsid - metabolism</subject><subject>Capsid Proteins - metabolism</subject><subject>Capsid Proteins - ultrastructure</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>HIV-1 - genetics</subject><subject>HIV-1 - metabolism</subject><subject>Humans</subject><subject>Macaca mulatta</subject><subject>Protein Domains</subject><subject>Protein Multimerization</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Tripartite Motif Proteins</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Virus-Cell Interactions</subject><issn>0022-538X</issn><issn>1098-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcFrFDEUxoModq3ePMvgyYPT5mUmk-QiyKJ1S0tLqeItJJk3bWQ2WZNsof-9Wbctenrwvh_f-3gfIW-BHgEweXz6Y3VEgQ9dC-IZWQBVsuUc-udkQSljLe_kzwPyKudflELfD_1LcsAUSMF7uiCrEwyYzNycxxHnZoqpucKS4p3fLZdmk_3YXJpSMIWquHgTfPExNPa-ub5anfPmMsWCPuTX5MVk5oxvHuYh-f71y_XyW3t2cbJafj5rXQ9QWq6oMQoMCCtEJyZlBmuQOVRSMjVNxoKd6hytHZHXnMMwwkgZR2mtdKo7JJ_2vputXePoMJQaVW-SX5t0r6Px-n8l-Ft9E-80F4oqzqvB-71BzMXr7HxBd-tiCOiKhvogyboKfXi4kuLvLeai1z47nGcTMG6zBiXo0DHR79CPe9SlmHPC6SkLUL2rSNeK9N-KNIiKv_s3_xP82En3B5YGjRU</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Wagner, Jonathan M</creator><creator>Christensen, Devin E</creator><creator>Bhattacharya, Akash</creator><creator>Dawidziak, Daria M</creator><creator>Roganowicz, Marcin D</creator><creator>Wan, Yueping</creator><creator>Pumroy, Ruth A</creator><creator>Demeler, Borries</creator><creator>Ivanov, Dmitri N</creator><creator>Ganser-Pornillos, Barbie K</creator><creator>Sundquist, Wesley I</creator><creator>Pornillos, Owen</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9056-5002</orcidid><orcidid>https://orcid.org/0000000190565002</orcidid></search><sort><creationdate>20180215</creationdate><title>General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins</title><author>Wagner, Jonathan M ; Christensen, Devin E ; Bhattacharya, Akash ; Dawidziak, Daria M ; Roganowicz, Marcin D ; Wan, Yueping ; Pumroy, Ruth A ; Demeler, Borries ; Ivanov, Dmitri N ; Ganser-Pornillos, Barbie K ; Sundquist, Wesley I ; Pornillos, Owen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-590aa91a17b7737f9a6bae2ce98829ffab1bf9ffdbbde591866d1d025e8bb8c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antiviral Restriction Factors</topic><topic>Aotidae</topic><topic>Capsid - metabolism</topic><topic>Capsid Proteins - metabolism</topic><topic>Capsid Proteins - ultrastructure</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>HIV-1 - genetics</topic><topic>HIV-1 - metabolism</topic><topic>Humans</topic><topic>Macaca mulatta</topic><topic>Protein Domains</topic><topic>Protein Multimerization</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Tripartite Motif Proteins</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Virus-Cell Interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Jonathan M</creatorcontrib><creatorcontrib>Christensen, Devin E</creatorcontrib><creatorcontrib>Bhattacharya, Akash</creatorcontrib><creatorcontrib>Dawidziak, Daria M</creatorcontrib><creatorcontrib>Roganowicz, Marcin D</creatorcontrib><creatorcontrib>Wan, Yueping</creatorcontrib><creatorcontrib>Pumroy, Ruth A</creatorcontrib><creatorcontrib>Demeler, Borries</creatorcontrib><creatorcontrib>Ivanov, Dmitri N</creatorcontrib><creatorcontrib>Ganser-Pornillos, Barbie K</creatorcontrib><creatorcontrib>Sundquist, Wesley I</creatorcontrib><creatorcontrib>Pornillos, Owen</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Jonathan M</au><au>Christensen, Devin E</au><au>Bhattacharya, Akash</au><au>Dawidziak, Daria M</au><au>Roganowicz, Marcin D</au><au>Wan, Yueping</au><au>Pumroy, Ruth A</au><au>Demeler, Borries</au><au>Ivanov, Dmitri N</au><au>Ganser-Pornillos, Barbie K</au><au>Sundquist, Wesley I</au><au>Pornillos, Owen</au><au>Kirchhoff, Frank</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins</atitle><jtitle>Journal of virology</jtitle><addtitle>J Virol</addtitle><date>2018-02-15</date><risdate>2018</risdate><volume>92</volume><issue>4</issue><issn>0022-538X</issn><eissn>1098-5514</eissn><abstract>Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( of &gt;1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly through its cyclophilin A domain and therefore was thought to act independently of higher-order assembly. Here, we show that TRIMCyp shares the assembly properties of TRIM5α and that both forms of TRIM5 use the same mechanism of hexagonal lattice formation to promote viral recognition and restriction.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>29187540</pmid><doi>10.1128/JVI.01563-17</doi><orcidid>https://orcid.org/0000-0001-9056-5002</orcidid><orcidid>https://orcid.org/0000000190565002</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-538X
ispartof Journal of virology, 2018-02, Vol.92 (4)
issn 0022-538X
1098-5514
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5790955
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Amino Acid Sequence
Animals
Antiviral Restriction Factors
Aotidae
Capsid - metabolism
Capsid Proteins - metabolism
Capsid Proteins - ultrastructure
Carrier Proteins - genetics
Carrier Proteins - metabolism
HeLa Cells
HIV-1 - genetics
HIV-1 - metabolism
Humans
Macaca mulatta
Protein Domains
Protein Multimerization
Proteins - genetics
Proteins - metabolism
Tripartite Motif Proteins
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Virus-Cell Interactions
title General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Model%20for%20Retroviral%20Capsid%20Pattern%20Recognition%20by%20TRIM5%20Proteins&rft.jtitle=Journal%20of%20virology&rft.au=Wagner,%20Jonathan%20M&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2018-02-15&rft.volume=92&rft.issue=4&rft.issn=0022-538X&rft.eissn=1098-5514&rft_id=info:doi/10.1128/JVI.01563-17&rft_dat=%3Cproquest_pubme%3E1970632743%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970632743&rft_id=info:pmid/29187540&rfr_iscdi=true