Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis

The microvasculature continuously adapts in response to pathophysiological conditions to meet tissue demands. Quantitative assessment of the dynamic changes in the coronary microvasculature is therefore crucial in enhancing our knowledge regarding the impact of cardiovascular diseases in tissue perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-01, Vol.8 (1), p.1854-19, Article 1854
Hauptverfasser: Gkontra, Polyxeni, Norton, Kerri-Ann, Żak, Magdalena M., Clemente, Cristina, Agüero, Jaume, Ibáñez, Borja, Santos, Andrés, Popel, Aleksander S., Arroyo, Alicia G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 1854
container_title Scientific reports
container_volume 8
creator Gkontra, Polyxeni
Norton, Kerri-Ann
Żak, Magdalena M.
Clemente, Cristina
Agüero, Jaume
Ibáñez, Borja
Santos, Andrés
Popel, Aleksander S.
Arroyo, Alicia G.
description The microvasculature continuously adapts in response to pathophysiological conditions to meet tissue demands. Quantitative assessment of the dynamic changes in the coronary microvasculature is therefore crucial in enhancing our knowledge regarding the impact of cardiovascular diseases in tissue perfusion and in developing efficient angiotherapies. Using confocal microscopy and thick tissue sections, we developed a 3D fully automated pipeline that allows to precisely reconstruct the microvasculature and to extract parameters that quantify all its major features, its relation to smooth muscle actin positive cells and capillary diffusion regions. The novel pipeline was applied in the analysis of the coronary microvasculature from healthy tissue and tissue at various stages after myocardial infarction (MI) in the pig model, whose coronary vasculature closely resembles that of human tissue. We unravelled alterations in the microvasculature, particularly structural changes and angioadaptation in the aftermath of MI. In addition, we evaluated the extracted knowledge’s potential for the prediction of pathophysiological conditions in tissue, using different classification schemes. The high accuracy achieved in this respect, demonstrates the ability of our approach not only to quantify and identify pathology-related changes of microvascular beds, but also to predict complex and dynamic microvascular patterns.
doi_str_mv 10.1038/s41598-018-19758-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5789835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993013790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b074b5b93c7eabee306a255e697198ae0b48fcfb06892f3154d4d6709d09e9a3</originalsourceid><addsrcrecordid>eNp1kUtr3TAQRk1paUKaP9BFEXTTjRs9bWlTKEkfgUA32YuxPLYVZOtWsgP330fJTcNtodpIoDOfZnSq6j2jnxkV-iJLpoyuKdM1M63StXxVnXIqVc0F56-PzifVec53tCzFjWTmbXXCjdBcS3lajVfo_G7C5JeRzN6leA_ZbQEScRMsI2YCw4qJzPvoIPUeAvHLAMmtPi5knVLcxomIKzJsIewJbGucYcWe-BlGJLBA2Gef31VvBggZz5_3s-r2-7fby5_1za8f15dfb2onW7nWHW1lpzojXIvQIQraAFcKG9MyowFpJ_Xgho422vBBMCV72TctNT01aECcVV8Osbutm7F3uKwJgt2l0k3a2wje_n2z-MmO8d6qVhstVAn49ByQ4u8N82pnnx2GAAvGLVtmjKBMtIYW9OM_6F3cUpn3ieKNEo1uC8UPVPnanBMOL80wah9N2oNJW0zaJ5NWlqIPx2O8lPzxVgBxAPLu0Rymo7f_H_sAXtirwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992653687</pqid></control><display><type>article</type><title>Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gkontra, Polyxeni ; Norton, Kerri-Ann ; Żak, Magdalena M. ; Clemente, Cristina ; Agüero, Jaume ; Ibáñez, Borja ; Santos, Andrés ; Popel, Aleksander S. ; Arroyo, Alicia G.</creator><creatorcontrib>Gkontra, Polyxeni ; Norton, Kerri-Ann ; Żak, Magdalena M. ; Clemente, Cristina ; Agüero, Jaume ; Ibáñez, Borja ; Santos, Andrés ; Popel, Aleksander S. ; Arroyo, Alicia G.</creatorcontrib><description>The microvasculature continuously adapts in response to pathophysiological conditions to meet tissue demands. Quantitative assessment of the dynamic changes in the coronary microvasculature is therefore crucial in enhancing our knowledge regarding the impact of cardiovascular diseases in tissue perfusion and in developing efficient angiotherapies. Using confocal microscopy and thick tissue sections, we developed a 3D fully automated pipeline that allows to precisely reconstruct the microvasculature and to extract parameters that quantify all its major features, its relation to smooth muscle actin positive cells and capillary diffusion regions. The novel pipeline was applied in the analysis of the coronary microvasculature from healthy tissue and tissue at various stages after myocardial infarction (MI) in the pig model, whose coronary vasculature closely resembles that of human tissue. We unravelled alterations in the microvasculature, particularly structural changes and angioadaptation in the aftermath of MI. In addition, we evaluated the extracted knowledge’s potential for the prediction of pathophysiological conditions in tissue, using different classification schemes. The high accuracy achieved in this respect, demonstrates the ability of our approach not only to quantify and identify pathology-related changes of microvascular beds, but also to predict complex and dynamic microvascular patterns.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-19758-4</identifier><identifier>PMID: 29382844</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 631/114/1305 ; 631/114/1564 ; 631/1647/245/2221 ; 631/1647/245/2225 ; Actin ; Animals ; Automation ; Cardiovascular diseases ; Confocal microscopy ; Heart attacks ; Humanities and Social Sciences ; Image processing ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Male ; Microcirculation ; Microvasculature ; Microvessels - diagnostic imaging ; Microvessels - physiopathology ; multidisciplinary ; Myocardial infarction ; Myocardial Infarction - diagnostic imaging ; Myocardial Infarction - physiopathology ; Perfusion ; Science ; Science (multidisciplinary) ; Smooth muscle ; Swine ; Tissues</subject><ispartof>Scientific reports, 2018-01, Vol.8 (1), p.1854-19, Article 1854</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b074b5b93c7eabee306a255e697198ae0b48fcfb06892f3154d4d6709d09e9a3</citedby><cites>FETCH-LOGICAL-c474t-b074b5b93c7eabee306a255e697198ae0b48fcfb06892f3154d4d6709d09e9a3</cites><orcidid>0000-0003-1002-9467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789835/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29382844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gkontra, Polyxeni</creatorcontrib><creatorcontrib>Norton, Kerri-Ann</creatorcontrib><creatorcontrib>Żak, Magdalena M.</creatorcontrib><creatorcontrib>Clemente, Cristina</creatorcontrib><creatorcontrib>Agüero, Jaume</creatorcontrib><creatorcontrib>Ibáñez, Borja</creatorcontrib><creatorcontrib>Santos, Andrés</creatorcontrib><creatorcontrib>Popel, Aleksander S.</creatorcontrib><creatorcontrib>Arroyo, Alicia G.</creatorcontrib><title>Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The microvasculature continuously adapts in response to pathophysiological conditions to meet tissue demands. Quantitative assessment of the dynamic changes in the coronary microvasculature is therefore crucial in enhancing our knowledge regarding the impact of cardiovascular diseases in tissue perfusion and in developing efficient angiotherapies. Using confocal microscopy and thick tissue sections, we developed a 3D fully automated pipeline that allows to precisely reconstruct the microvasculature and to extract parameters that quantify all its major features, its relation to smooth muscle actin positive cells and capillary diffusion regions. The novel pipeline was applied in the analysis of the coronary microvasculature from healthy tissue and tissue at various stages after myocardial infarction (MI) in the pig model, whose coronary vasculature closely resembles that of human tissue. We unravelled alterations in the microvasculature, particularly structural changes and angioadaptation in the aftermath of MI. In addition, we evaluated the extracted knowledge’s potential for the prediction of pathophysiological conditions in tissue, using different classification schemes. The high accuracy achieved in this respect, demonstrates the ability of our approach not only to quantify and identify pathology-related changes of microvascular beds, but also to predict complex and dynamic microvascular patterns.</description><subject>14/19</subject><subject>631/114/1305</subject><subject>631/114/1564</subject><subject>631/1647/245/2221</subject><subject>631/1647/245/2225</subject><subject>Actin</subject><subject>Animals</subject><subject>Automation</subject><subject>Cardiovascular diseases</subject><subject>Confocal microscopy</subject><subject>Heart attacks</subject><subject>Humanities and Social Sciences</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Male</subject><subject>Microcirculation</subject><subject>Microvasculature</subject><subject>Microvessels - diagnostic imaging</subject><subject>Microvessels - physiopathology</subject><subject>multidisciplinary</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - diagnostic imaging</subject><subject>Myocardial Infarction - physiopathology</subject><subject>Perfusion</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Smooth muscle</subject><subject>Swine</subject><subject>Tissues</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtr3TAQRk1paUKaP9BFEXTTjRs9bWlTKEkfgUA32YuxPLYVZOtWsgP330fJTcNtodpIoDOfZnSq6j2jnxkV-iJLpoyuKdM1M63StXxVnXIqVc0F56-PzifVec53tCzFjWTmbXXCjdBcS3lajVfo_G7C5JeRzN6leA_ZbQEScRMsI2YCw4qJzPvoIPUeAvHLAMmtPi5knVLcxomIKzJsIewJbGucYcWe-BlGJLBA2Gef31VvBggZz5_3s-r2-7fby5_1za8f15dfb2onW7nWHW1lpzojXIvQIQraAFcKG9MyowFpJ_Xgho422vBBMCV72TctNT01aECcVV8Osbutm7F3uKwJgt2l0k3a2wje_n2z-MmO8d6qVhstVAn49ByQ4u8N82pnnx2GAAvGLVtmjKBMtIYW9OM_6F3cUpn3ieKNEo1uC8UPVPnanBMOL80wah9N2oNJW0zaJ5NWlqIPx2O8lPzxVgBxAPLu0Rymo7f_H_sAXtirwg</recordid><startdate>20180130</startdate><enddate>20180130</enddate><creator>Gkontra, Polyxeni</creator><creator>Norton, Kerri-Ann</creator><creator>Żak, Magdalena M.</creator><creator>Clemente, Cristina</creator><creator>Agüero, Jaume</creator><creator>Ibáñez, Borja</creator><creator>Santos, Andrés</creator><creator>Popel, Aleksander S.</creator><creator>Arroyo, Alicia G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1002-9467</orcidid></search><sort><creationdate>20180130</creationdate><title>Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis</title><author>Gkontra, Polyxeni ; Norton, Kerri-Ann ; Żak, Magdalena M. ; Clemente, Cristina ; Agüero, Jaume ; Ibáñez, Borja ; Santos, Andrés ; Popel, Aleksander S. ; Arroyo, Alicia G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b074b5b93c7eabee306a255e697198ae0b48fcfb06892f3154d4d6709d09e9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14/19</topic><topic>631/114/1305</topic><topic>631/114/1564</topic><topic>631/1647/245/2221</topic><topic>631/1647/245/2225</topic><topic>Actin</topic><topic>Animals</topic><topic>Automation</topic><topic>Cardiovascular diseases</topic><topic>Confocal microscopy</topic><topic>Heart attacks</topic><topic>Humanities and Social Sciences</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Male</topic><topic>Microcirculation</topic><topic>Microvasculature</topic><topic>Microvessels - diagnostic imaging</topic><topic>Microvessels - physiopathology</topic><topic>multidisciplinary</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - diagnostic imaging</topic><topic>Myocardial Infarction - physiopathology</topic><topic>Perfusion</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Smooth muscle</topic><topic>Swine</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gkontra, Polyxeni</creatorcontrib><creatorcontrib>Norton, Kerri-Ann</creatorcontrib><creatorcontrib>Żak, Magdalena M.</creatorcontrib><creatorcontrib>Clemente, Cristina</creatorcontrib><creatorcontrib>Agüero, Jaume</creatorcontrib><creatorcontrib>Ibáñez, Borja</creatorcontrib><creatorcontrib>Santos, Andrés</creatorcontrib><creatorcontrib>Popel, Aleksander S.</creatorcontrib><creatorcontrib>Arroyo, Alicia G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gkontra, Polyxeni</au><au>Norton, Kerri-Ann</au><au>Żak, Magdalena M.</au><au>Clemente, Cristina</au><au>Agüero, Jaume</au><au>Ibáñez, Borja</au><au>Santos, Andrés</au><au>Popel, Aleksander S.</au><au>Arroyo, Alicia G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-01-30</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>1854</spage><epage>19</epage><pages>1854-19</pages><artnum>1854</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The microvasculature continuously adapts in response to pathophysiological conditions to meet tissue demands. Quantitative assessment of the dynamic changes in the coronary microvasculature is therefore crucial in enhancing our knowledge regarding the impact of cardiovascular diseases in tissue perfusion and in developing efficient angiotherapies. Using confocal microscopy and thick tissue sections, we developed a 3D fully automated pipeline that allows to precisely reconstruct the microvasculature and to extract parameters that quantify all its major features, its relation to smooth muscle actin positive cells and capillary diffusion regions. The novel pipeline was applied in the analysis of the coronary microvasculature from healthy tissue and tissue at various stages after myocardial infarction (MI) in the pig model, whose coronary vasculature closely resembles that of human tissue. We unravelled alterations in the microvasculature, particularly structural changes and angioadaptation in the aftermath of MI. In addition, we evaluated the extracted knowledge’s potential for the prediction of pathophysiological conditions in tissue, using different classification schemes. The high accuracy achieved in this respect, demonstrates the ability of our approach not only to quantify and identify pathology-related changes of microvascular beds, but also to predict complex and dynamic microvascular patterns.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29382844</pmid><doi>10.1038/s41598-018-19758-4</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1002-9467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-01, Vol.8 (1), p.1854-19, Article 1854
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5789835
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 14/19
631/114/1305
631/114/1564
631/1647/245/2221
631/1647/245/2225
Actin
Animals
Automation
Cardiovascular diseases
Confocal microscopy
Heart attacks
Humanities and Social Sciences
Image processing
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Male
Microcirculation
Microvasculature
Microvessels - diagnostic imaging
Microvessels - physiopathology
multidisciplinary
Myocardial infarction
Myocardial Infarction - diagnostic imaging
Myocardial Infarction - physiopathology
Perfusion
Science
Science (multidisciplinary)
Smooth muscle
Swine
Tissues
title Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20microvascular%20changes%20after%20myocardial%20infarction%20through%203D%20fully%20automated%20image%20analysis&rft.jtitle=Scientific%20reports&rft.au=Gkontra,%20Polyxeni&rft.date=2018-01-30&rft.volume=8&rft.issue=1&rft.spage=1854&rft.epage=19&rft.pages=1854-19&rft.artnum=1854&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-19758-4&rft_dat=%3Cproquest_pubme%3E1993013790%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992653687&rft_id=info:pmid/29382844&rfr_iscdi=true