A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy

Modern cancer diagnosis requires histological, molecular, and genomic tumor analyses. Tumor sampling is often achieved using a targeted needle biopsy approach. Targeting errors and cancer heterogeneity causing inaccurate sampling are important limitations of this blind technique leading to non-diagn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-01, Vol.8 (1), p.1792-10, Article 1792
Hauptverfasser: Desroches, Joannie, Jermyn, Michael, Pinto, Michael, Picot, Fabien, Tremblay, Marie-Andrée, Obaid, Sami, Marple, Eric, Urmey, Kirk, Trudel, Dominique, Soulez, Gilles, Guiot, Marie-Christine, Wilson, Brian C., Petrecca, Kevin, Leblond, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 1792
container_title Scientific reports
container_volume 8
creator Desroches, Joannie
Jermyn, Michael
Pinto, Michael
Picot, Fabien
Tremblay, Marie-Andrée
Obaid, Sami
Marple, Eric
Urmey, Kirk
Trudel, Dominique
Soulez, Gilles
Guiot, Marie-Christine
Wilson, Brian C.
Petrecca, Kevin
Leblond, Frédéric
description Modern cancer diagnosis requires histological, molecular, and genomic tumor analyses. Tumor sampling is often achieved using a targeted needle biopsy approach. Targeting errors and cancer heterogeneity causing inaccurate sampling are important limitations of this blind technique leading to non-diagnostic or poor quality samples, and the need for repeated biopsies pose elevated patient risk. An optical technology that can analyze the molecular nature of the tissue prior to harvesting could improve cancer targeting and mitigate patient risk. Here we report on the design, development, and validation of an in situ intraoperative, label-free, cancer detection system based on high wavenumber Raman spectroscopy. This optical detection device was engineered into a commercially available biopsy system allowing tumor analysis prior to tissue harvesting without disrupting workflow. Using a dual validation approach we show that high wavenumber Raman spectroscopy can detect human dense cancer with >60% cancer cells in situ during surgery with a sensitivity and specificity of 80% and 90%, respectively. We also demonstrate for the first time the use of this system in a swine brain biopsy model. These studies set the stage for the clinical translation of this optical molecular imaging method for high yield and safe targeted biopsy.
doi_str_mv 10.1038/s41598-018-20233-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5788981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993011216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-bf2709f0e33026e057ac3df7a83b282586a79470968593a88106403d42f1465f3</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhoMottT-AS8k4I03W5NMspvcCKX4USgIYq9DNjt7mnI2WZPdI-ffm3pqOQrmZkLmmTcz8xLymrMLzkC_L5IroxvGdSOYAGjgGTkVTKpGgBDPj-4n5LyUe1aPEkZy85KcCAOd4YKfkttLGvEnnXC5SwNdS4gb-s1NLtIyo19yKj7NezqmTEOku7BLdHF5gwsOtM-uvnkXPWa6hFJWpH1Ic9m_Ii9Gty14_hjPyO2nj9-vvjQ3Xz9fX13eNF5JtjT9KDpmRoYATLTIVOc8DGPnNPRCC6Vb1xlZkVYrA05rzlrJYJBi5LJVI5yRDwfdee0nHDzGJbutnXOYXN7b5IL9OxPDnd2knVWd1kbzKvDuUSCnHyuWxU6heNxuXcS0FsuNAcbrptqKvv0HvU9rjnW8B0oI3WqQlRIHytfVlYzjUzOc2Qfj7ME4W42zv42zUIveHI_xVPLHpgrAASg1FTeYj_7-v-wvaGKiiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992286834</pqid></control><display><type>article</type><title>A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Desroches, Joannie ; Jermyn, Michael ; Pinto, Michael ; Picot, Fabien ; Tremblay, Marie-Andrée ; Obaid, Sami ; Marple, Eric ; Urmey, Kirk ; Trudel, Dominique ; Soulez, Gilles ; Guiot, Marie-Christine ; Wilson, Brian C. ; Petrecca, Kevin ; Leblond, Frédéric</creator><creatorcontrib>Desroches, Joannie ; Jermyn, Michael ; Pinto, Michael ; Picot, Fabien ; Tremblay, Marie-Andrée ; Obaid, Sami ; Marple, Eric ; Urmey, Kirk ; Trudel, Dominique ; Soulez, Gilles ; Guiot, Marie-Christine ; Wilson, Brian C. ; Petrecca, Kevin ; Leblond, Frédéric</creatorcontrib><description>Modern cancer diagnosis requires histological, molecular, and genomic tumor analyses. Tumor sampling is often achieved using a targeted needle biopsy approach. Targeting errors and cancer heterogeneity causing inaccurate sampling are important limitations of this blind technique leading to non-diagnostic or poor quality samples, and the need for repeated biopsies pose elevated patient risk. An optical technology that can analyze the molecular nature of the tissue prior to harvesting could improve cancer targeting and mitigate patient risk. Here we report on the design, development, and validation of an in situ intraoperative, label-free, cancer detection system based on high wavenumber Raman spectroscopy. This optical detection device was engineered into a commercially available biopsy system allowing tumor analysis prior to tissue harvesting without disrupting workflow. Using a dual validation approach we show that high wavenumber Raman spectroscopy can detect human dense cancer with &gt;60% cancer cells in situ during surgery with a sensitivity and specificity of 80% and 90%, respectively. We also demonstrate for the first time the use of this system in a swine brain biopsy model. These studies set the stage for the clinical translation of this optical molecular imaging method for high yield and safe targeted biopsy.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-20233-3</identifier><identifier>PMID: 29379121</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/624/1075/1079 ; 692/4028/546 ; Adult ; Aged ; Animals ; Biopsy ; Brain cancer ; Brain Neoplasms - diagnosis ; Brain Neoplasms - pathology ; Cancer ; Female ; Humanities and Social Sciences ; Humans ; Male ; Middle Aged ; multidisciplinary ; Neuroimaging ; Raman spectroscopy ; Sampling ; Science ; Science (multidisciplinary) ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Surgery ; Swine</subject><ispartof>Scientific reports, 2018-01, Vol.8 (1), p.1792-10, Article 1792</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-bf2709f0e33026e057ac3df7a83b282586a79470968593a88106403d42f1465f3</citedby><cites>FETCH-LOGICAL-c540t-bf2709f0e33026e057ac3df7a83b282586a79470968593a88106403d42f1465f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788981/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788981/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29379121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Desroches, Joannie</creatorcontrib><creatorcontrib>Jermyn, Michael</creatorcontrib><creatorcontrib>Pinto, Michael</creatorcontrib><creatorcontrib>Picot, Fabien</creatorcontrib><creatorcontrib>Tremblay, Marie-Andrée</creatorcontrib><creatorcontrib>Obaid, Sami</creatorcontrib><creatorcontrib>Marple, Eric</creatorcontrib><creatorcontrib>Urmey, Kirk</creatorcontrib><creatorcontrib>Trudel, Dominique</creatorcontrib><creatorcontrib>Soulez, Gilles</creatorcontrib><creatorcontrib>Guiot, Marie-Christine</creatorcontrib><creatorcontrib>Wilson, Brian C.</creatorcontrib><creatorcontrib>Petrecca, Kevin</creatorcontrib><creatorcontrib>Leblond, Frédéric</creatorcontrib><title>A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Modern cancer diagnosis requires histological, molecular, and genomic tumor analyses. Tumor sampling is often achieved using a targeted needle biopsy approach. Targeting errors and cancer heterogeneity causing inaccurate sampling are important limitations of this blind technique leading to non-diagnostic or poor quality samples, and the need for repeated biopsies pose elevated patient risk. An optical technology that can analyze the molecular nature of the tissue prior to harvesting could improve cancer targeting and mitigate patient risk. Here we report on the design, development, and validation of an in situ intraoperative, label-free, cancer detection system based on high wavenumber Raman spectroscopy. This optical detection device was engineered into a commercially available biopsy system allowing tumor analysis prior to tissue harvesting without disrupting workflow. Using a dual validation approach we show that high wavenumber Raman spectroscopy can detect human dense cancer with &gt;60% cancer cells in situ during surgery with a sensitivity and specificity of 80% and 90%, respectively. We also demonstrate for the first time the use of this system in a swine brain biopsy model. These studies set the stage for the clinical translation of this optical molecular imaging method for high yield and safe targeted biopsy.</description><subject>140/133</subject><subject>639/624/1075/1079</subject><subject>692/4028/546</subject><subject>Adult</subject><subject>Aged</subject><subject>Animals</subject><subject>Biopsy</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - pathology</subject><subject>Cancer</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Neuroimaging</subject><subject>Raman spectroscopy</subject><subject>Sampling</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Surgery</subject><subject>Swine</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kV1rFTEQhoMottT-AS8k4I03W5NMspvcCKX4USgIYq9DNjt7mnI2WZPdI-ffm3pqOQrmZkLmmTcz8xLymrMLzkC_L5IroxvGdSOYAGjgGTkVTKpGgBDPj-4n5LyUe1aPEkZy85KcCAOd4YKfkttLGvEnnXC5SwNdS4gb-s1NLtIyo19yKj7NezqmTEOku7BLdHF5gwsOtM-uvnkXPWa6hFJWpH1Ic9m_Ii9Gty14_hjPyO2nj9-vvjQ3Xz9fX13eNF5JtjT9KDpmRoYATLTIVOc8DGPnNPRCC6Vb1xlZkVYrA05rzlrJYJBi5LJVI5yRDwfdee0nHDzGJbutnXOYXN7b5IL9OxPDnd2knVWd1kbzKvDuUSCnHyuWxU6heNxuXcS0FsuNAcbrptqKvv0HvU9rjnW8B0oI3WqQlRIHytfVlYzjUzOc2Qfj7ME4W42zv42zUIveHI_xVPLHpgrAASg1FTeYj_7-v-wvaGKiiQ</recordid><startdate>20180129</startdate><enddate>20180129</enddate><creator>Desroches, Joannie</creator><creator>Jermyn, Michael</creator><creator>Pinto, Michael</creator><creator>Picot, Fabien</creator><creator>Tremblay, Marie-Andrée</creator><creator>Obaid, Sami</creator><creator>Marple, Eric</creator><creator>Urmey, Kirk</creator><creator>Trudel, Dominique</creator><creator>Soulez, Gilles</creator><creator>Guiot, Marie-Christine</creator><creator>Wilson, Brian C.</creator><creator>Petrecca, Kevin</creator><creator>Leblond, Frédéric</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180129</creationdate><title>A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy</title><author>Desroches, Joannie ; Jermyn, Michael ; Pinto, Michael ; Picot, Fabien ; Tremblay, Marie-Andrée ; Obaid, Sami ; Marple, Eric ; Urmey, Kirk ; Trudel, Dominique ; Soulez, Gilles ; Guiot, Marie-Christine ; Wilson, Brian C. ; Petrecca, Kevin ; Leblond, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-bf2709f0e33026e057ac3df7a83b282586a79470968593a88106403d42f1465f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/133</topic><topic>639/624/1075/1079</topic><topic>692/4028/546</topic><topic>Adult</topic><topic>Aged</topic><topic>Animals</topic><topic>Biopsy</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - pathology</topic><topic>Cancer</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Neuroimaging</topic><topic>Raman spectroscopy</topic><topic>Sampling</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Surgery</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desroches, Joannie</creatorcontrib><creatorcontrib>Jermyn, Michael</creatorcontrib><creatorcontrib>Pinto, Michael</creatorcontrib><creatorcontrib>Picot, Fabien</creatorcontrib><creatorcontrib>Tremblay, Marie-Andrée</creatorcontrib><creatorcontrib>Obaid, Sami</creatorcontrib><creatorcontrib>Marple, Eric</creatorcontrib><creatorcontrib>Urmey, Kirk</creatorcontrib><creatorcontrib>Trudel, Dominique</creatorcontrib><creatorcontrib>Soulez, Gilles</creatorcontrib><creatorcontrib>Guiot, Marie-Christine</creatorcontrib><creatorcontrib>Wilson, Brian C.</creatorcontrib><creatorcontrib>Petrecca, Kevin</creatorcontrib><creatorcontrib>Leblond, Frédéric</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desroches, Joannie</au><au>Jermyn, Michael</au><au>Pinto, Michael</au><au>Picot, Fabien</au><au>Tremblay, Marie-Andrée</au><au>Obaid, Sami</au><au>Marple, Eric</au><au>Urmey, Kirk</au><au>Trudel, Dominique</au><au>Soulez, Gilles</au><au>Guiot, Marie-Christine</au><au>Wilson, Brian C.</au><au>Petrecca, Kevin</au><au>Leblond, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-01-29</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>1792</spage><epage>10</epage><pages>1792-10</pages><artnum>1792</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Modern cancer diagnosis requires histological, molecular, and genomic tumor analyses. Tumor sampling is often achieved using a targeted needle biopsy approach. Targeting errors and cancer heterogeneity causing inaccurate sampling are important limitations of this blind technique leading to non-diagnostic or poor quality samples, and the need for repeated biopsies pose elevated patient risk. An optical technology that can analyze the molecular nature of the tissue prior to harvesting could improve cancer targeting and mitigate patient risk. Here we report on the design, development, and validation of an in situ intraoperative, label-free, cancer detection system based on high wavenumber Raman spectroscopy. This optical detection device was engineered into a commercially available biopsy system allowing tumor analysis prior to tissue harvesting without disrupting workflow. Using a dual validation approach we show that high wavenumber Raman spectroscopy can detect human dense cancer with &gt;60% cancer cells in situ during surgery with a sensitivity and specificity of 80% and 90%, respectively. We also demonstrate for the first time the use of this system in a swine brain biopsy model. These studies set the stage for the clinical translation of this optical molecular imaging method for high yield and safe targeted biopsy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29379121</pmid><doi>10.1038/s41598-018-20233-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-01, Vol.8 (1), p.1792-10, Article 1792
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5788981
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 140/133
639/624/1075/1079
692/4028/546
Adult
Aged
Animals
Biopsy
Brain cancer
Brain Neoplasms - diagnosis
Brain Neoplasms - pathology
Cancer
Female
Humanities and Social Sciences
Humans
Male
Middle Aged
multidisciplinary
Neuroimaging
Raman spectroscopy
Sampling
Science
Science (multidisciplinary)
Spectrum analysis
Spectrum Analysis, Raman - methods
Surgery
Swine
title A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20using%20Raman%20spectroscopy%20for%20in%20vivo%20targeted%20brain%20cancer%20tissue%20biopsy&rft.jtitle=Scientific%20reports&rft.au=Desroches,%20Joannie&rft.date=2018-01-29&rft.volume=8&rft.issue=1&rft.spage=1792&rft.epage=10&rft.pages=1792-10&rft.artnum=1792&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-20233-3&rft_dat=%3Cproquest_pubme%3E1993011216%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992286834&rft_id=info:pmid/29379121&rfr_iscdi=true