Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper

Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2018-01, Vol.28 (2), p.268-274.e5
Hauptverfasser: Zimmer, Christoph T., Garrood, William T., Singh, Kumar Saurabh, Randall, Emma, Lueke, Bettina, Gutbrod, Oliver, Matthiesen, Svend, Kohler, Maxie, Nauen, Ralf, Davies, T.G. Emyr, Bass, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274.e5
container_issue 2
container_start_page 268
container_title Current biology
container_volume 28
creator Zimmer, Christoph T.
Garrood, William T.
Singh, Kumar Saurabh
Randall, Emma
Lueke, Bettina
Gutbrod, Oliver
Matthiesen, Svend
Kohler, Maxie
Nauen, Ralf
Davies, T.G. Emyr
Bass, Chris
description Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3–5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6–8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. •The cytochrome P450 CYP6ER1 is duplicated in imidacloprid resistant N. lugens strains•Amino-acid alterations in certain CYP6ER1 variants confer resistance to imidacloprid•Resistant hoppers have paralogs with and without the gain-of-function mutations•The susceptible and mutant CYP6ER1 copies show marked divergence in their expression Zimmer et al. explore the functional significance of genetic variation at the loci encoding CYP6ER1, a cytochrome P450 enzyme, in field strains of the brown planthopper. They show that duplication of CYP6ER1 provided opportunities for functional and regulatory innovation, leading to resistance to the insecticide imidiacloprid.
doi_str_mv 10.1016/j.cub.2017.11.060
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5788746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982217315427</els_id><sourcerecordid>29337073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-7e37a4a7f348a454629721cc7def1ba7fa8997851708c4f8f82711114a967fc3</originalsourceid><addsrcrecordid>eNp9kdFu2yAYhVG1qsnaPsBuJl7AHtjYgCZN2tqui1S1VZV7RPDPQuSCBXaq9ulHlqVab8rNj-A7B3EOQp8oKSmh7ZdNaaZVWRHKS0pL0pIjNKeCy4Iw1nxAcyJbUkhRVTP0MaUNIbQSsj1Bs0rWNSe8nqPpFoKdvBld8Lp3L3q3wcHiy2nondEjdPieNQRfg4eEL6Pb5jGuAV9tQz8d6IVPkD2M6wA_QHJp1N4Adv4v-iOGJ4_ve-3HdRgGiGfo2Oo-wfm_eYqWP6-WF7-Km7vrxcX3m8I0lI8Fh5prprmtmdCsYW0leUWN4R1YusrnWkjJRWaJMMwKKypO82Jattya-hR929sO0-oROgN-jLpXQ3SPOj6roJ16e-PdWv0OW9VwIThrswHdG5gYUopgX7WUqF0FaqNyBWpXgaJU5Qqy5vP_j74qDpln4OsegPzzrYOoknGQ4-pczCGqLrh37P8AAyGZjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zimmer, Christoph T. ; Garrood, William T. ; Singh, Kumar Saurabh ; Randall, Emma ; Lueke, Bettina ; Gutbrod, Oliver ; Matthiesen, Svend ; Kohler, Maxie ; Nauen, Ralf ; Davies, T.G. Emyr ; Bass, Chris</creator><creatorcontrib>Zimmer, Christoph T. ; Garrood, William T. ; Singh, Kumar Saurabh ; Randall, Emma ; Lueke, Bettina ; Gutbrod, Oliver ; Matthiesen, Svend ; Kohler, Maxie ; Nauen, Ralf ; Davies, T.G. Emyr ; Bass, Chris</creatorcontrib><description>Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3–5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6–8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. •The cytochrome P450 CYP6ER1 is duplicated in imidacloprid resistant N. lugens strains•Amino-acid alterations in certain CYP6ER1 variants confer resistance to imidacloprid•Resistant hoppers have paralogs with and without the gain-of-function mutations•The susceptible and mutant CYP6ER1 copies show marked divergence in their expression Zimmer et al. explore the functional significance of genetic variation at the loci encoding CYP6ER1, a cytochrome P450 enzyme, in field strains of the brown planthopper. They show that duplication of CYP6ER1 provided opportunities for functional and regulatory innovation, leading to resistance to the insecticide imidiacloprid.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2017.11.060</identifier><identifier>PMID: 29337073</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Cytochrome P-450 Enzyme System - genetics ; duplication ; Evolution, Molecular ; Gene Dosage ; Gene Duplication ; Hemiptera - drug effects ; Hemiptera - genetics ; imidacloprid ; Insecticide Resistance ; Insecticides - pharmacology ; neofunctionalization ; Neonicotinoids - pharmacology ; Nilaparvata lugens ; Nitro Compounds - pharmacology ; P450 ; resistance</subject><ispartof>Current biology, 2018-01, Vol.28 (2), p.268-274.e5</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-7e37a4a7f348a454629721cc7def1ba7fa8997851708c4f8f82711114a967fc3</citedby><cites>FETCH-LOGICAL-c517t-7e37a4a7f348a454629721cc7def1ba7fa8997851708c4f8f82711114a967fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982217315427$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29337073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmer, Christoph T.</creatorcontrib><creatorcontrib>Garrood, William T.</creatorcontrib><creatorcontrib>Singh, Kumar Saurabh</creatorcontrib><creatorcontrib>Randall, Emma</creatorcontrib><creatorcontrib>Lueke, Bettina</creatorcontrib><creatorcontrib>Gutbrod, Oliver</creatorcontrib><creatorcontrib>Matthiesen, Svend</creatorcontrib><creatorcontrib>Kohler, Maxie</creatorcontrib><creatorcontrib>Nauen, Ralf</creatorcontrib><creatorcontrib>Davies, T.G. Emyr</creatorcontrib><creatorcontrib>Bass, Chris</creatorcontrib><title>Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3–5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6–8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. •The cytochrome P450 CYP6ER1 is duplicated in imidacloprid resistant N. lugens strains•Amino-acid alterations in certain CYP6ER1 variants confer resistance to imidacloprid•Resistant hoppers have paralogs with and without the gain-of-function mutations•The susceptible and mutant CYP6ER1 copies show marked divergence in their expression Zimmer et al. explore the functional significance of genetic variation at the loci encoding CYP6ER1, a cytochrome P450 enzyme, in field strains of the brown planthopper. They show that duplication of CYP6ER1 provided opportunities for functional and regulatory innovation, leading to resistance to the insecticide imidiacloprid.</description><subject>Animals</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>duplication</subject><subject>Evolution, Molecular</subject><subject>Gene Dosage</subject><subject>Gene Duplication</subject><subject>Hemiptera - drug effects</subject><subject>Hemiptera - genetics</subject><subject>imidacloprid</subject><subject>Insecticide Resistance</subject><subject>Insecticides - pharmacology</subject><subject>neofunctionalization</subject><subject>Neonicotinoids - pharmacology</subject><subject>Nilaparvata lugens</subject><subject>Nitro Compounds - pharmacology</subject><subject>P450</subject><subject>resistance</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdFu2yAYhVG1qsnaPsBuJl7AHtjYgCZN2tqui1S1VZV7RPDPQuSCBXaq9ulHlqVab8rNj-A7B3EOQp8oKSmh7ZdNaaZVWRHKS0pL0pIjNKeCy4Iw1nxAcyJbUkhRVTP0MaUNIbQSsj1Bs0rWNSe8nqPpFoKdvBld8Lp3L3q3wcHiy2nondEjdPieNQRfg4eEL6Pb5jGuAV9tQz8d6IVPkD2M6wA_QHJp1N4Adv4v-iOGJ4_ve-3HdRgGiGfo2Oo-wfm_eYqWP6-WF7-Km7vrxcX3m8I0lI8Fh5prprmtmdCsYW0leUWN4R1YusrnWkjJRWaJMMwKKypO82Jattya-hR929sO0-oROgN-jLpXQ3SPOj6roJ16e-PdWv0OW9VwIThrswHdG5gYUopgX7WUqF0FaqNyBWpXgaJU5Qqy5vP_j74qDpln4OsegPzzrYOoknGQ4-pczCGqLrh37P8AAyGZjQ</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Zimmer, Christoph T.</creator><creator>Garrood, William T.</creator><creator>Singh, Kumar Saurabh</creator><creator>Randall, Emma</creator><creator>Lueke, Bettina</creator><creator>Gutbrod, Oliver</creator><creator>Matthiesen, Svend</creator><creator>Kohler, Maxie</creator><creator>Nauen, Ralf</creator><creator>Davies, T.G. Emyr</creator><creator>Bass, Chris</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20180122</creationdate><title>Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper</title><author>Zimmer, Christoph T. ; Garrood, William T. ; Singh, Kumar Saurabh ; Randall, Emma ; Lueke, Bettina ; Gutbrod, Oliver ; Matthiesen, Svend ; Kohler, Maxie ; Nauen, Ralf ; Davies, T.G. Emyr ; Bass, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-7e37a4a7f348a454629721cc7def1ba7fa8997851708c4f8f82711114a967fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>duplication</topic><topic>Evolution, Molecular</topic><topic>Gene Dosage</topic><topic>Gene Duplication</topic><topic>Hemiptera - drug effects</topic><topic>Hemiptera - genetics</topic><topic>imidacloprid</topic><topic>Insecticide Resistance</topic><topic>Insecticides - pharmacology</topic><topic>neofunctionalization</topic><topic>Neonicotinoids - pharmacology</topic><topic>Nilaparvata lugens</topic><topic>Nitro Compounds - pharmacology</topic><topic>P450</topic><topic>resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmer, Christoph T.</creatorcontrib><creatorcontrib>Garrood, William T.</creatorcontrib><creatorcontrib>Singh, Kumar Saurabh</creatorcontrib><creatorcontrib>Randall, Emma</creatorcontrib><creatorcontrib>Lueke, Bettina</creatorcontrib><creatorcontrib>Gutbrod, Oliver</creatorcontrib><creatorcontrib>Matthiesen, Svend</creatorcontrib><creatorcontrib>Kohler, Maxie</creatorcontrib><creatorcontrib>Nauen, Ralf</creatorcontrib><creatorcontrib>Davies, T.G. Emyr</creatorcontrib><creatorcontrib>Bass, Chris</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmer, Christoph T.</au><au>Garrood, William T.</au><au>Singh, Kumar Saurabh</au><au>Randall, Emma</au><au>Lueke, Bettina</au><au>Gutbrod, Oliver</au><au>Matthiesen, Svend</au><au>Kohler, Maxie</au><au>Nauen, Ralf</au><au>Davies, T.G. Emyr</au><au>Bass, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2018-01-22</date><risdate>2018</risdate><volume>28</volume><issue>2</issue><spage>268</spage><epage>274.e5</epage><pages>268-274.e5</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3–5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6–8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. •The cytochrome P450 CYP6ER1 is duplicated in imidacloprid resistant N. lugens strains•Amino-acid alterations in certain CYP6ER1 variants confer resistance to imidacloprid•Resistant hoppers have paralogs with and without the gain-of-function mutations•The susceptible and mutant CYP6ER1 copies show marked divergence in their expression Zimmer et al. explore the functional significance of genetic variation at the loci encoding CYP6ER1, a cytochrome P450 enzyme, in field strains of the brown planthopper. They show that duplication of CYP6ER1 provided opportunities for functional and regulatory innovation, leading to resistance to the insecticide imidiacloprid.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>29337073</pmid><doi>10.1016/j.cub.2017.11.060</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2018-01, Vol.28 (2), p.268-274.e5
issn 0960-9822
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5788746
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Animals
Cytochrome P-450 Enzyme System - genetics
duplication
Evolution, Molecular
Gene Dosage
Gene Duplication
Hemiptera - drug effects
Hemiptera - genetics
imidacloprid
Insecticide Resistance
Insecticides - pharmacology
neofunctionalization
Neonicotinoids - pharmacology
Nilaparvata lugens
Nitro Compounds - pharmacology
P450
resistance
title Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neofunctionalization%20of%20Duplicated%20P450%20Genes%20Drives%20the%20Evolution%20of%20Insecticide%20Resistance%20in%20the%20Brown%20Planthopper&rft.jtitle=Current%20biology&rft.au=Zimmer,%20Christoph%20T.&rft.date=2018-01-22&rft.volume=28&rft.issue=2&rft.spage=268&rft.epage=274.e5&rft.pages=268-274.e5&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2017.11.060&rft_dat=%3Cpubmed_cross%3E29337073%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29337073&rft_els_id=S0960982217315427&rfr_iscdi=true