Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations
Key message Here, we show that Au SINE elements have strong associations with protein-coding genes in wheat. Most importantly Au SINE insertion within introns causes allelic variation and might induce intron retention . The impact of transposable elements (TEs) on genome structure and function is in...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2018-02, Vol.37 (2), p.193-208 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | Plant cell reports |
container_volume | 37 |
creator | Keidar, Danielle Doron, Chen Kashkush, Khalil |
description | Key message
Here, we show that
Au
SINE elements have strong associations with protein-coding genes in wheat. Most importantly
Au
SINE insertion within introns causes allelic variation and might induce intron retention
.
The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat (
T. aestivum
), in addition to the updated genome drafts of the diploid donor species,
T. urartu
and
Ae. tauschii
, to retrieve and analyze a non-LTR retrotransposon family, termed
Au
SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of
Au
SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact
Au
SINE insertions from
T. urartu, Ae. tauschii
and
T. aestivum
genome drafts, respectively. The 1886
Au
SINE insertions were distributed in the seven homoeologous chromosomes of
T. aestivum
, while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the
Triticum–Aegilops
genus. In addition, expression analysis revealed that both regular transcripts and alternative
Au
SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of
Au
SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants.
Au
SINE might play a prominent role in speciation by creating transcriptome variation. |
doi_str_mv | 10.1007/s00299-017-2213-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5787218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966743010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-beb7e9e016aaa41599f06dfcecd1309623d03331f907e1272b28f436d7c4cc113</originalsourceid><addsrcrecordid>eNp1UcFuEzEQtRCIpoUP4IIscY1hxt6usxyQqqotlSo4QKXeLK_Xm7hK1sHjbZV_4WPxNqUqB07W-L15b2YeY-8QPiKA_kQAsmkEoBZSohL4gs2wUlJIUDcv2Qy0RKE1VgfskOgWoIC6fs0OZIN1pVDN2O8LP8SNF_eh89wOdr2jQDz23PLknR_yesety-HOlzqnmJMdaBspDnN-MvIfl9_O5jwM_H7lbf7MXRxyaZrzLlBOoR1ziAUMeVU4NLbLBzcqTh13qxQ3RanU84ePApYZiKILduqjN-xVb9fk3z6-R-z6_Ozn6Vdx9f3i8vTkSrhKQxatb7VvPGBtra3wuGl6qLveedehgqaWqgOlFPYNaI9Sy1Yu-krVnXaVc4jqiH3Z627HduO7ae1k12abwsamnYk2mH-RIazMMt6ZY70oJ14UgQ-PAin-Gj1lcxvHVK5JBpu61pUChMLCPculSJR8_-SAYKZAzT5QUwI1U6BmGu3989GeOv4mWAhyT6ACDUufnln_V_UPd7-vWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966743010</pqid></control><display><type>article</type><title>Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Keidar, Danielle ; Doron, Chen ; Kashkush, Khalil</creator><creatorcontrib>Keidar, Danielle ; Doron, Chen ; Kashkush, Khalil</creatorcontrib><description>Key message
Here, we show that
Au
SINE elements have strong associations with protein-coding genes in wheat. Most importantly
Au
SINE insertion within introns causes allelic variation and might induce intron retention
.
The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat (
T. aestivum
), in addition to the updated genome drafts of the diploid donor species,
T. urartu
and
Ae. tauschii
, to retrieve and analyze a non-LTR retrotransposon family, termed
Au
SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of
Au
SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact
Au
SINE insertions from
T. urartu, Ae. tauschii
and
T. aestivum
genome drafts, respectively. The 1886
Au
SINE insertions were distributed in the seven homoeologous chromosomes of
T. aestivum
, while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the
Triticum–Aegilops
genus. In addition, expression analysis revealed that both regular transcripts and alternative
Au
SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of
Au
SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants.
Au
SINE might play a prominent role in speciation by creating transcriptome variation.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-017-2213-1</identifier><identifier>PMID: 29164313</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alternative splicing ; Biomedical and Life Sciences ; Biotechnology ; Bread ; Cell Biology ; Chromosomes ; Chromosomes, Plant - genetics ; Eukaryotes ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant - genetics ; Genome, Plant - genetics ; Genomes ; Introns ; Life Sciences ; Mutagenesis, Insertional ; Original ; Original Article ; Plant Biochemistry ; Plant Leaves - genetics ; Plant Sciences ; Plant species ; Polymerase chain reaction ; Retention ; Retroelements - genetics ; Speciation ; Structure-function relationships ; Trigonometric functions ; Triticum - genetics ; Triticum aestivum ; Triticum urartu ; Variation ; Wheat</subject><ispartof>Plant cell reports, 2018-02, Vol.37 (2), p.193-208</ispartof><rights>The Author(s) 2017</rights><rights>Plant Cell Reports is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-beb7e9e016aaa41599f06dfcecd1309623d03331f907e1272b28f436d7c4cc113</citedby><cites>FETCH-LOGICAL-c470t-beb7e9e016aaa41599f06dfcecd1309623d03331f907e1272b28f436d7c4cc113</cites><orcidid>0000-0001-7861-4959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-017-2213-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-017-2213-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29164313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keidar, Danielle</creatorcontrib><creatorcontrib>Doron, Chen</creatorcontrib><creatorcontrib>Kashkush, Khalil</creatorcontrib><title>Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message
Here, we show that
Au
SINE elements have strong associations with protein-coding genes in wheat. Most importantly
Au
SINE insertion within introns causes allelic variation and might induce intron retention
.
The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat (
T. aestivum
), in addition to the updated genome drafts of the diploid donor species,
T. urartu
and
Ae. tauschii
, to retrieve and analyze a non-LTR retrotransposon family, termed
Au
SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of
Au
SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact
Au
SINE insertions from
T. urartu, Ae. tauschii
and
T. aestivum
genome drafts, respectively. The 1886
Au
SINE insertions were distributed in the seven homoeologous chromosomes of
T. aestivum
, while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the
Triticum–Aegilops
genus. In addition, expression analysis revealed that both regular transcripts and alternative
Au
SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of
Au
SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants.
Au
SINE might play a prominent role in speciation by creating transcriptome variation.</description><subject>Alternative splicing</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bread</subject><subject>Cell Biology</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>Eukaryotes</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Introns</subject><subject>Life Sciences</subject><subject>Mutagenesis, Insertional</subject><subject>Original</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Leaves - genetics</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Polymerase chain reaction</subject><subject>Retention</subject><subject>Retroelements - genetics</subject><subject>Speciation</subject><subject>Structure-function relationships</subject><subject>Trigonometric functions</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Triticum urartu</subject><subject>Variation</subject><subject>Wheat</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UcFuEzEQtRCIpoUP4IIscY1hxt6usxyQqqotlSo4QKXeLK_Xm7hK1sHjbZV_4WPxNqUqB07W-L15b2YeY-8QPiKA_kQAsmkEoBZSohL4gs2wUlJIUDcv2Qy0RKE1VgfskOgWoIC6fs0OZIN1pVDN2O8LP8SNF_eh89wOdr2jQDz23PLknR_yesety-HOlzqnmJMdaBspDnN-MvIfl9_O5jwM_H7lbf7MXRxyaZrzLlBOoR1ziAUMeVU4NLbLBzcqTh13qxQ3RanU84ePApYZiKILduqjN-xVb9fk3z6-R-z6_Ozn6Vdx9f3i8vTkSrhKQxatb7VvPGBtra3wuGl6qLveedehgqaWqgOlFPYNaI9Sy1Yu-krVnXaVc4jqiH3Z627HduO7ae1k12abwsamnYk2mH-RIazMMt6ZY70oJ14UgQ-PAin-Gj1lcxvHVK5JBpu61pUChMLCPculSJR8_-SAYKZAzT5QUwI1U6BmGu3989GeOv4mWAhyT6ACDUufnln_V_UPd7-vWg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Keidar, Danielle</creator><creator>Doron, Chen</creator><creator>Kashkush, Khalil</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7861-4959</orcidid></search><sort><creationdate>20180201</creationdate><title>Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations</title><author>Keidar, Danielle ; Doron, Chen ; Kashkush, Khalil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-beb7e9e016aaa41599f06dfcecd1309623d03331f907e1272b28f436d7c4cc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative splicing</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bread</topic><topic>Cell Biology</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>Eukaryotes</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Introns</topic><topic>Life Sciences</topic><topic>Mutagenesis, Insertional</topic><topic>Original</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Leaves - genetics</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Polymerase chain reaction</topic><topic>Retention</topic><topic>Retroelements - genetics</topic><topic>Speciation</topic><topic>Structure-function relationships</topic><topic>Trigonometric functions</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Triticum urartu</topic><topic>Variation</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keidar, Danielle</creatorcontrib><creatorcontrib>Doron, Chen</creatorcontrib><creatorcontrib>Kashkush, Khalil</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keidar, Danielle</au><au>Doron, Chen</au><au>Kashkush, Khalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>37</volume><issue>2</issue><spage>193</spage><epage>208</epage><pages>193-208</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message
Here, we show that
Au
SINE elements have strong associations with protein-coding genes in wheat. Most importantly
Au
SINE insertion within introns causes allelic variation and might induce intron retention
.
The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat (
T. aestivum
), in addition to the updated genome drafts of the diploid donor species,
T. urartu
and
Ae. tauschii
, to retrieve and analyze a non-LTR retrotransposon family, termed
Au
SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of
Au
SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact
Au
SINE insertions from
T. urartu, Ae. tauschii
and
T. aestivum
genome drafts, respectively. The 1886
Au
SINE insertions were distributed in the seven homoeologous chromosomes of
T. aestivum
, while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the
Triticum–Aegilops
genus. In addition, expression analysis revealed that both regular transcripts and alternative
Au
SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of
Au
SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants.
Au
SINE might play a prominent role in speciation by creating transcriptome variation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29164313</pmid><doi>10.1007/s00299-017-2213-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7861-4959</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7714 |
ispartof | Plant cell reports, 2018-02, Vol.37 (2), p.193-208 |
issn | 0721-7714 1432-203X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5787218 |
source | MEDLINE; SpringerNature Journals |
subjects | Alternative splicing Biomedical and Life Sciences Biotechnology Bread Cell Biology Chromosomes Chromosomes, Plant - genetics Eukaryotes Gene expression Gene Expression Profiling - methods Gene Expression Regulation, Plant Genes Genes, Plant - genetics Genome, Plant - genetics Genomes Introns Life Sciences Mutagenesis, Insertional Original Original Article Plant Biochemistry Plant Leaves - genetics Plant Sciences Plant species Polymerase chain reaction Retention Retroelements - genetics Speciation Structure-function relationships Trigonometric functions Triticum - genetics Triticum aestivum Triticum urartu Variation Wheat |
title | Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20analysis%20of%20a%20recently%20active%20retrotransposon,%20Au%20SINE,%20in%20wheat:%20content,%20distribution%20within%20subgenomes%20and%20chromosomes,%20and%20gene%20associations&rft.jtitle=Plant%20cell%20reports&rft.au=Keidar,%20Danielle&rft.date=2018-02-01&rft.volume=37&rft.issue=2&rft.spage=193&rft.epage=208&rft.pages=193-208&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-017-2213-1&rft_dat=%3Cproquest_pubme%3E1966743010%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966743010&rft_id=info:pmid/29164313&rfr_iscdi=true |