Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations

Key message Here, we show that Au SINE elements have strong associations with protein-coding genes in wheat. Most importantly Au SINE insertion within introns causes allelic variation and might induce intron retention . The impact of transposable elements (TEs) on genome structure and function is in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell reports 2018-02, Vol.37 (2), p.193-208
Hauptverfasser: Keidar, Danielle, Doron, Chen, Kashkush, Khalil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 2
container_start_page 193
container_title Plant cell reports
container_volume 37
creator Keidar, Danielle
Doron, Chen
Kashkush, Khalil
description Key message Here, we show that Au SINE elements have strong associations with protein-coding genes in wheat. Most importantly Au SINE insertion within introns causes allelic variation and might induce intron retention . The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat ( T. aestivum ), in addition to the updated genome drafts of the diploid donor species, T. urartu and Ae. tauschii , to retrieve and analyze a non-LTR retrotransposon family, termed Au SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of Au SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact Au SINE insertions from T. urartu, Ae. tauschii and T. aestivum genome drafts, respectively. The 1886 Au SINE insertions were distributed in the seven homoeologous chromosomes of T. aestivum , while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the Triticum–Aegilops genus. In addition, expression analysis revealed that both regular transcripts and alternative Au SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of Au SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants. Au SINE might play a prominent role in speciation by creating transcriptome variation.
doi_str_mv 10.1007/s00299-017-2213-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5787218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966743010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-beb7e9e016aaa41599f06dfcecd1309623d03331f907e1272b28f436d7c4cc113</originalsourceid><addsrcrecordid>eNp1UcFuEzEQtRCIpoUP4IIscY1hxt6usxyQqqotlSo4QKXeLK_Xm7hK1sHjbZV_4WPxNqUqB07W-L15b2YeY-8QPiKA_kQAsmkEoBZSohL4gs2wUlJIUDcv2Qy0RKE1VgfskOgWoIC6fs0OZIN1pVDN2O8LP8SNF_eh89wOdr2jQDz23PLknR_yesety-HOlzqnmJMdaBspDnN-MvIfl9_O5jwM_H7lbf7MXRxyaZrzLlBOoR1ziAUMeVU4NLbLBzcqTh13qxQ3RanU84ePApYZiKILduqjN-xVb9fk3z6-R-z6_Ozn6Vdx9f3i8vTkSrhKQxatb7VvPGBtra3wuGl6qLveedehgqaWqgOlFPYNaI9Sy1Yu-krVnXaVc4jqiH3Z627HduO7ae1k12abwsamnYk2mH-RIazMMt6ZY70oJ14UgQ-PAin-Gj1lcxvHVK5JBpu61pUChMLCPculSJR8_-SAYKZAzT5QUwI1U6BmGu3989GeOv4mWAhyT6ACDUufnln_V_UPd7-vWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966743010</pqid></control><display><type>article</type><title>Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Keidar, Danielle ; Doron, Chen ; Kashkush, Khalil</creator><creatorcontrib>Keidar, Danielle ; Doron, Chen ; Kashkush, Khalil</creatorcontrib><description>Key message Here, we show that Au SINE elements have strong associations with protein-coding genes in wheat. Most importantly Au SINE insertion within introns causes allelic variation and might induce intron retention . The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat ( T. aestivum ), in addition to the updated genome drafts of the diploid donor species, T. urartu and Ae. tauschii , to retrieve and analyze a non-LTR retrotransposon family, termed Au SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of Au SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact Au SINE insertions from T. urartu, Ae. tauschii and T. aestivum genome drafts, respectively. The 1886 Au SINE insertions were distributed in the seven homoeologous chromosomes of T. aestivum , while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the Triticum–Aegilops genus. In addition, expression analysis revealed that both regular transcripts and alternative Au SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of Au SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants. Au SINE might play a prominent role in speciation by creating transcriptome variation.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-017-2213-1</identifier><identifier>PMID: 29164313</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alternative splicing ; Biomedical and Life Sciences ; Biotechnology ; Bread ; Cell Biology ; Chromosomes ; Chromosomes, Plant - genetics ; Eukaryotes ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant - genetics ; Genome, Plant - genetics ; Genomes ; Introns ; Life Sciences ; Mutagenesis, Insertional ; Original ; Original Article ; Plant Biochemistry ; Plant Leaves - genetics ; Plant Sciences ; Plant species ; Polymerase chain reaction ; Retention ; Retroelements - genetics ; Speciation ; Structure-function relationships ; Trigonometric functions ; Triticum - genetics ; Triticum aestivum ; Triticum urartu ; Variation ; Wheat</subject><ispartof>Plant cell reports, 2018-02, Vol.37 (2), p.193-208</ispartof><rights>The Author(s) 2017</rights><rights>Plant Cell Reports is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-beb7e9e016aaa41599f06dfcecd1309623d03331f907e1272b28f436d7c4cc113</citedby><cites>FETCH-LOGICAL-c470t-beb7e9e016aaa41599f06dfcecd1309623d03331f907e1272b28f436d7c4cc113</cites><orcidid>0000-0001-7861-4959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-017-2213-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-017-2213-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29164313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keidar, Danielle</creatorcontrib><creatorcontrib>Doron, Chen</creatorcontrib><creatorcontrib>Kashkush, Khalil</creatorcontrib><title>Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message Here, we show that Au SINE elements have strong associations with protein-coding genes in wheat. Most importantly Au SINE insertion within introns causes allelic variation and might induce intron retention . The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat ( T. aestivum ), in addition to the updated genome drafts of the diploid donor species, T. urartu and Ae. tauschii , to retrieve and analyze a non-LTR retrotransposon family, termed Au SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of Au SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact Au SINE insertions from T. urartu, Ae. tauschii and T. aestivum genome drafts, respectively. The 1886 Au SINE insertions were distributed in the seven homoeologous chromosomes of T. aestivum , while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the Triticum–Aegilops genus. In addition, expression analysis revealed that both regular transcripts and alternative Au SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of Au SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants. Au SINE might play a prominent role in speciation by creating transcriptome variation.</description><subject>Alternative splicing</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bread</subject><subject>Cell Biology</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>Eukaryotes</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Introns</subject><subject>Life Sciences</subject><subject>Mutagenesis, Insertional</subject><subject>Original</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Leaves - genetics</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Polymerase chain reaction</subject><subject>Retention</subject><subject>Retroelements - genetics</subject><subject>Speciation</subject><subject>Structure-function relationships</subject><subject>Trigonometric functions</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Triticum urartu</subject><subject>Variation</subject><subject>Wheat</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UcFuEzEQtRCIpoUP4IIscY1hxt6usxyQqqotlSo4QKXeLK_Xm7hK1sHjbZV_4WPxNqUqB07W-L15b2YeY-8QPiKA_kQAsmkEoBZSohL4gs2wUlJIUDcv2Qy0RKE1VgfskOgWoIC6fs0OZIN1pVDN2O8LP8SNF_eh89wOdr2jQDz23PLknR_yesety-HOlzqnmJMdaBspDnN-MvIfl9_O5jwM_H7lbf7MXRxyaZrzLlBOoR1ziAUMeVU4NLbLBzcqTh13qxQ3RanU84ePApYZiKILduqjN-xVb9fk3z6-R-z6_Ozn6Vdx9f3i8vTkSrhKQxatb7VvPGBtra3wuGl6qLveedehgqaWqgOlFPYNaI9Sy1Yu-krVnXaVc4jqiH3Z627HduO7ae1k12abwsamnYk2mH-RIazMMt6ZY70oJ14UgQ-PAin-Gj1lcxvHVK5JBpu61pUChMLCPculSJR8_-SAYKZAzT5QUwI1U6BmGu3989GeOv4mWAhyT6ACDUufnln_V_UPd7-vWg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Keidar, Danielle</creator><creator>Doron, Chen</creator><creator>Kashkush, Khalil</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7861-4959</orcidid></search><sort><creationdate>20180201</creationdate><title>Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations</title><author>Keidar, Danielle ; Doron, Chen ; Kashkush, Khalil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-beb7e9e016aaa41599f06dfcecd1309623d03331f907e1272b28f436d7c4cc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative splicing</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bread</topic><topic>Cell Biology</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>Eukaryotes</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Introns</topic><topic>Life Sciences</topic><topic>Mutagenesis, Insertional</topic><topic>Original</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Leaves - genetics</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Polymerase chain reaction</topic><topic>Retention</topic><topic>Retroelements - genetics</topic><topic>Speciation</topic><topic>Structure-function relationships</topic><topic>Trigonometric functions</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Triticum urartu</topic><topic>Variation</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keidar, Danielle</creatorcontrib><creatorcontrib>Doron, Chen</creatorcontrib><creatorcontrib>Kashkush, Khalil</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keidar, Danielle</au><au>Doron, Chen</au><au>Kashkush, Khalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>37</volume><issue>2</issue><spage>193</spage><epage>208</epage><pages>193-208</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message Here, we show that Au SINE elements have strong associations with protein-coding genes in wheat. Most importantly Au SINE insertion within introns causes allelic variation and might induce intron retention . The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat ( T. aestivum ), in addition to the updated genome drafts of the diploid donor species, T. urartu and Ae. tauschii , to retrieve and analyze a non-LTR retrotransposon family, termed Au SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of Au SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact Au SINE insertions from T. urartu, Ae. tauschii and T. aestivum genome drafts, respectively. The 1886 Au SINE insertions were distributed in the seven homoeologous chromosomes of T. aestivum , while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the Triticum–Aegilops genus. In addition, expression analysis revealed that both regular transcripts and alternative Au SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of Au SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants. Au SINE might play a prominent role in speciation by creating transcriptome variation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29164313</pmid><doi>10.1007/s00299-017-2213-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7861-4959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2018-02, Vol.37 (2), p.193-208
issn 0721-7714
1432-203X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5787218
source MEDLINE; SpringerNature Journals
subjects Alternative splicing
Biomedical and Life Sciences
Biotechnology
Bread
Cell Biology
Chromosomes
Chromosomes, Plant - genetics
Eukaryotes
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Plant
Genes
Genes, Plant - genetics
Genome, Plant - genetics
Genomes
Introns
Life Sciences
Mutagenesis, Insertional
Original
Original Article
Plant Biochemistry
Plant Leaves - genetics
Plant Sciences
Plant species
Polymerase chain reaction
Retention
Retroelements - genetics
Speciation
Structure-function relationships
Trigonometric functions
Triticum - genetics
Triticum aestivum
Triticum urartu
Variation
Wheat
title Genome-wide analysis of a recently active retrotransposon, Au SINE, in wheat: content, distribution within subgenomes and chromosomes, and gene associations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20analysis%20of%20a%20recently%20active%20retrotransposon,%20Au%20SINE,%20in%20wheat:%20content,%20distribution%20within%20subgenomes%20and%20chromosomes,%20and%20gene%20associations&rft.jtitle=Plant%20cell%20reports&rft.au=Keidar,%20Danielle&rft.date=2018-02-01&rft.volume=37&rft.issue=2&rft.spage=193&rft.epage=208&rft.pages=193-208&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-017-2213-1&rft_dat=%3Cproquest_pubme%3E1966743010%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966743010&rft_id=info:pmid/29164313&rfr_iscdi=true